//=========================================================================== /*! * * * \brief Error measure for classication tasks, typically used for evaluation of results * * * * \author T. Glasmachers * \date 2010-2011 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ #ifndef SHARK_OBJECTIVEFUNCTIONS_LOSS_ZEROONELOSS_H #define SHARK_OBJECTIVEFUNCTIONS_LOSS_ZEROONELOSS_H #include namespace shark { /// /// \brief 0-1-loss for classification. /// /// The ZeroOneLoss requires the existence of the comparison /// operator == for its LabelType template parameter. The /// loss function returns zero of the predictions exactly /// matches the label, and one otherwise. /// template class ZeroOneLoss : public AbstractLoss { public: typedef AbstractLoss base_type; typedef typename base_type::BatchLabelType BatchLabelType; typedef typename base_type::BatchOutputType BatchOutputType; /// constructor ZeroOneLoss() { } /// \brief From INameable: return the class name. std::string name() const { return "ZeroOneLoss"; } using base_type::eval; ///\brief Return zero if labels == predictions and one otherwise. double eval(BatchLabelType const& labels, BatchOutputType const& predictions) const{ std::size_t numInputs = labels.size(); SIZE_CHECK(numInputs == predictions.size()); double error = 0; for(std::size_t i = 0; i != numInputs; ++i){ error += (predictions(i) != labels(i))?1.0:0.0; } return error; } }; /// \brief 0-1-loss for classification. template class ZeroOneLoss > : public AbstractLoss > { public: typedef AbstractLoss > base_type; typedef typename base_type::BatchLabelType BatchLabelType; typedef typename base_type::BatchOutputType BatchOutputType; /// constructor /// /// \param threshold: in the case dim(predictions) == 1, predictions strictly larger than this parameter are regarded as belonging to the positive class ZeroOneLoss(double threshold = 0.0) { m_threshold = threshold; } /// \brief From INameable: return the class name. std::string name() const { return "ZeroOneLoss"; } // annoyingness of C++ templates using base_type::eval; /// Return zero if labels == arg max { predictions_i } and one otherwise, /// where the index i runs over the components of the predictions vector. /// A special version of dim(predictions) == 1 computes the predicted /// labels by thresholding at zero. Shark's label convention is used, /// saying that a positive value encodes class 0, a negative value /// encodes class 1. double eval(BatchLabelType const& labels, BatchOutputType const& predictions) const{ std::size_t numInputs = labels.size(); SIZE_CHECK(numInputs == predictions.size1()); double error = 0; for(std::size_t i = 0; i != numInputs; ++i){ error+=evalSingle(labels(i),row(predictions,i)); } return error; } double eval(Data const& targets, Data< blas::vector> const& predictions, RealVector const& weights) const{ SIZE_CHECK(predictions.numberOfElements() == weights.size()); SIZE_CHECK(targets.numberOfElements() == weights.size()); SIZE_CHECK(predictions.numberOfBatches() == targets.numberOfBatches()); double error = 0; for(std::size_t i = 0; i != predictions.numberOfBatches(); ++i){ for(std::size_t j = 0; j != targets.batch(i).size(); ++j){ error+= weights(i) * evalSingle(targets.batch(i)(j),row(predictions.batch(i),j)); } } return error / weights.size(); } private: template double evalSingle(unsigned int label, VectorType const& predictions) const{ std::size_t size = predictions.size(); if (size == 1){ // binary case, single real-valued predictions unsigned int t = (predictions(0) > m_threshold); if (t == label) return 0.0; else return 1.0; } else{ // multi-class case, one prediction component per class RANGE_CHECK(label < size); double p = predictions(label); for (std::size_t i = 0; i= p) return 1.0; } return 0.0; } } double m_threshold; ///< in the case dim(predictions) == 1, predictions strictly larger tha this parameter are regarded as belonging to the positive class }; } #endif