//===========================================================================
/*!
*
*
* \brief Error measure for classication tasks, typically used for evaluation of results
*
*
*
* \author T. Glasmachers
* \date 2010-2011
*
*
* \par Copyright 1995-2017 Shark Development Team
*
*
* This file is part of Shark.
*
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see .
*
*/
#ifndef SHARK_OBJECTIVEFUNCTIONS_LOSS_ZEROONELOSS_H
#define SHARK_OBJECTIVEFUNCTIONS_LOSS_ZEROONELOSS_H
#include
namespace shark {
///
/// \brief 0-1-loss for classification.
///
/// The ZeroOneLoss requires the existence of the comparison
/// operator == for its LabelType template parameter. The
/// loss function returns zero of the predictions exactly
/// matches the label, and one otherwise.
///
template
class ZeroOneLoss : public AbstractLoss
{
public:
typedef AbstractLoss base_type;
typedef typename base_type::BatchLabelType BatchLabelType;
typedef typename base_type::BatchOutputType BatchOutputType;
/// constructor
ZeroOneLoss()
{ }
/// \brief From INameable: return the class name.
std::string name() const
{ return "ZeroOneLoss"; }
using base_type::eval;
///\brief Return zero if labels == predictions and one otherwise.
double eval(BatchLabelType const& labels, BatchOutputType const& predictions) const{
std::size_t numInputs = labels.size();
SIZE_CHECK(numInputs == predictions.size());
double error = 0;
for(std::size_t i = 0; i != numInputs; ++i){
error += (predictions(i) != labels(i))?1.0:0.0;
}
return error;
}
};
/// \brief 0-1-loss for classification.
template
class ZeroOneLoss > : public AbstractLoss >
{
public:
typedef AbstractLoss > base_type;
typedef typename base_type::BatchLabelType BatchLabelType;
typedef typename base_type::BatchOutputType BatchOutputType;
/// constructor
///
/// \param threshold: in the case dim(predictions) == 1, predictions strictly larger than this parameter are regarded as belonging to the positive class
ZeroOneLoss(double threshold = 0.0)
{
m_threshold = threshold;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "ZeroOneLoss"; }
// annoyingness of C++ templates
using base_type::eval;
/// Return zero if labels == arg max { predictions_i } and one otherwise,
/// where the index i runs over the components of the predictions vector.
/// A special version of dim(predictions) == 1 computes the predicted
/// labels by thresholding at zero. Shark's label convention is used,
/// saying that a positive value encodes class 0, a negative value
/// encodes class 1.
double eval(BatchLabelType const& labels, BatchOutputType const& predictions) const{
std::size_t numInputs = labels.size();
SIZE_CHECK(numInputs == predictions.size1());
double error = 0;
for(std::size_t i = 0; i != numInputs; ++i){
error+=evalSingle(labels(i),row(predictions,i));
}
return error;
}
double eval(Data const& targets, Data< blas::vector> const& predictions, RealVector const& weights) const{
SIZE_CHECK(predictions.numberOfElements() == weights.size());
SIZE_CHECK(targets.numberOfElements() == weights.size());
SIZE_CHECK(predictions.numberOfBatches() == targets.numberOfBatches());
double error = 0;
for(std::size_t i = 0; i != predictions.numberOfBatches(); ++i){
for(std::size_t j = 0; j != targets.batch(i).size(); ++j){
error+= weights(i) * evalSingle(targets.batch(i)(j),row(predictions.batch(i),j));
}
}
return error / weights.size();
}
private:
template
double evalSingle(unsigned int label, VectorType const& predictions) const{
std::size_t size = predictions.size();
if (size == 1){
// binary case, single real-valued predictions
unsigned int t = (predictions(0) > m_threshold);
if (t == label) return 0.0;
else return 1.0;
}
else{
// multi-class case, one prediction component per class
RANGE_CHECK(label < size);
double p = predictions(label);
for (std::size_t i = 0; i= p) return 1.0;
}
return 0.0;
}
}
double m_threshold; ///< in the case dim(predictions) == 1, predictions strictly larger tha this parameter are regarded as belonging to the positive class
};
}
#endif