ELF>05@@8 @x.x.000-q-q;;HHH888$$PtdttQtdRtdGNUJX6H;D~'kk Tgjc-l an57m}3 x[ NByUD^rEQ' r`"(G4UE3l.,  !/VF"?Y'U @{ __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit_mathPyModuleDef_InitPyFloat_FromDoublePyModule_AddObject_Py_dg_infinity_Py_dg_stdnanPyFloat_AsDouble__errno_locationPyExc_OverflowErrorPyErr_SetStringPyErr_OccurredPyExc_ValueErrorPyErr_SetFromErrnosqrtPyArg_ParseTuplePyLong_AsDoublelogPyNumber_TrueDivide_Py_DeallocPyErr_ExceptionMatchesPyErr_Clear_PyLong_FrexpPyExc_TypeErrorPyFloat_TypePyBool_FromLongcopysign_PyArg_CheckPositionalacosasinatanlog10PyNumber_Index_PyLong_One_PyLong_GCDPyNumber_AbsolutePyLong_FromLongatan2modfPy_BuildValuePyLong_FromDouble_PyObject_LookupSpecialfloorPyThreadState_Get_Py_CheckFunctionResult_PyObject_MakeTpCallceilPyErr_FormatPyType_ReadyPyLong_AsLongAndOverflowldexpfrexpacoshasinhatanhPyLong_TypePyNumber_SubtractPyObject_RichCompareBoolPyLong_AsLongLongAndOverflowPyLong_FromUnsignedLongLongPyNumber_FloorDividePyNumber_Multiply_PyLong_CopyPyType_IsSubtype_Py_bit_lengthPyLong_FromUnsignedLong_PyLong_LshiftPyExc_DeprecationWarningPyErr_WarnExnextafterPyObject_MallocPyObject_FreePySequence_TuplePyErr_NoMemoryfabsfmodPyObject_GetIterPyIter_NextPyMem_ReallocPyMem_FreePyMem_MallocPyExc_MemoryErrorpow_PyLong_Sign_PyLong_NumBits_PyLong_RshiftPyLong_AsUnsignedLongLongPyNumber_Addlog2_Py_NoneStruct_PyLong_Zeroerferfcroundexpm1_PyArg_UnpackKeywordslog1plibm.so.6libpthread.so.0libc.so.6GLIBC_2.2.5 ui  ui ui 0{zS0D8 װHh0p@@ (P{@H`X`!hPx@',p`2:P@7 =(8@1H`IX `hJx"B`UaJ@N G(@8@SHX `Yhx^@XhM@Z nRf (8@tHKX``xhx~IH m@ (Д8 @EHNX `hx -C  L  ( `8 @ H pX ` ðh ux ` ( J  -     B  3   8   ±( 08 `@ H `X ` h  qx  P R  Ͱ   ȱ  `(08 @HP X!`#h3p=x@BDFHIMPTXZ[]`cei (08@H P X ` hpx"$%&'() *(+0,8-@.H/P0X1`2h4p5x6789:;<>?ACEGJKLNOQRS U(V0W8Y@\H^P_Xa`bhdpfxghjHHeHtH5%@%h%h%h%h%h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h %h!%h"%h#%h$%h%%h&%h'p%h(`%h)P%h*@%h+0%h, %zh-%rh.%jh/%bh0%Zh1%Rh2%Jh3%Bh4%:h5%2h6%*h7p%"h8`%h9P%h:@% h;0%h< %h=%h>%h?%h@%hA%hB%hC%hD%hE%hF%hGp%hH`%hIP%hJ@%hK0%hL %zhM%rhN%fFH5H>y: HH:eE1!H+8HE1/1G1HDt$fTfD.5I"8I1Z1HL4HN5w24 5H4LMuH+P9H~C9HLI.HH7LY;7H|$1H7H|$97Lt$I.Hl$HI.9LK7H|$7H|$1+7H|$8H|$ 7H|$6I/8Ls8IH}~?HmH;-/8 HD$Hy8Ht$HH9^667)\$0d$ T$t$l$y|$DD$DL$f.L$ f(D$0TfD(T" TFaW1HD$fDTfA.+<"_<H;Zڗf.H{\$D$3Dt$D|$$fA.{gD|$DL$~ ^HfE(fDTfA.W;D$fDTfA.A;:oh:u9LWH1WLWLWE1WHֹH=fr[H1[]$9f.$f([[D$$L$Hy[f.vf(M[G[$$H/[uH+uHImE1p^H\I,$]L1 ^H8D[D$VIHteLHI.HuLI/uLH&]Im:^Lx\Hk:[L^]I/uLKIm]L16\d$L$T$f.:T$L$d$1`+`oH__H^I_I_L$T$Wf.הT$f(L$;_5_D$T$L$Hd$uI__7_f.SHHf.cD$jD$Hf.{d$f.(f.f.r uH[h!"f/wH=H5nH?*H1[f[HuL$fT ]f.eHH5>nH:HdH5nH8LLH5mI8nH(Hf.D${dl$ff.Qwzf.{ f.~%f(=ђfTf.f(H(fDuD$HD$Q l$f(L$HD$l$L$l$HD$f.{f.{{~% f(=0fTf.wSf.YO!tD"DfD/-H H5lH9:1H(fTf.rH=»H5rlH?אATHUSH0HFHD$ H1HT$H5[lH\$Hl$ HSH{gHf.5fD( *fDT=fA.ff/^HHt H H0H[]A\H1HL$ HT$H5k?D$fHf.f( $D$~N-vIfA(fTf.d$ffD/fA(;D~ f.{D$fE.wfDTfD. ?D-fE.sA4$BHHHHH57HHHHGH+IuHfHmuHWLBHH=H?<dHt$(Hf.2?$J-fEL*t$(AYX$bIMoHfLfD(fA(D$P=D$u8fA(#Hu!!H H5MiH9E1L$$Hx/f.Rf/aDV!P,L <H5jE1I9z$,$f!f.zL߷H5hE1I8-DfD.\$fD(DL$D%fD.d$A<$fD(fE.z fD/vvKD$f.Vf!fD.z/u-3f.\$D>S!jfE._D/DHf(fT f.rff/vHf.z f/v:HD$D$f!f.z t!HAH9FuF1f.@HHf.#{1f.@HuD$YD$HKHHH;H f4HHH9Fu&Ff(fT~f.w31HiHf.{3f(fT Kf. svfPЃHHH$uHfHHf.$D${K/D$Nf.{ d$f.{\~ ċf(fTf.w*H9u"HuCl$5fTf.rHH5IeH81HHHf.dD${KoD$Nf.{ d$f.{\~ f(fTf.$w*HyubHuC8l$5fTf.rHٳH5dH8*1HHAVAUATIUHSHH>HHHt[A~sKHH9GOH~HWL$Ht$t$HHKuDd$Dl$HEfD.-T~fA()fTf.|HHoEfA(ʼn~%fD(fATf.%ԅMsH []A\Df.f(H}l$LGAHt$t$HHADd$t$`Dl$EHufD.-D4~=fE(D fDTfE.rmHH`EfA(ʼnD~fD(fETfD.ÄDMEudfA( aEfD.-2D%~fE(fDT@fE.rfDT-PE"fDV-fA(Dl$2t1vDl$tE"t$H`t$H1<PPD$.l$H61 E)fD.-ƃ{XD=fE(fDT5mfE.fDT-yHֹH=e^1uf.H(HH9Fu_Ff.zlf(fT f. wSff.EʄuAH|$t$H=]H(fDH8f.{f.{D$uD$D$HtHAWAVAUATUSHH8HH>HnIHD$HXL-L9hOHIHD$HL9hILHxHHHHxo1LHoH+H|$Ht$,l$,JHlHLl$IUHHIUHHLHD$L-ǫI߽ImfLMHIHHLI.ILI,$MVHIH;l$IuHiI.HHHLI/I[MHIH HLCI.IuLBI,$MHH;l$H+LL$MLT$IML\$IHT$HIH8L[]A\A]A^A_H\$HH3IHt$HH3MLd$H HD$H)H|$L9oTLT$Iz)L\$I{Ht$H|$HH1HxHt$1HlLd$I$HD$HI$Ht$,HL$,HHtMHt$HHt[H|$HHH~HH\$HHD$`H\$H\$IlH\$%H\$IZH\$L|$HH\$I?H+uH?1I"H\$L|H5[1HI8iH\$Ht$H>H|$HH>H\$H+Hl$HH+E1HH5[H8BHֹE1H=XH߉D${D|$EiH\$oH[HLt$MLD$IMl~H `H5aZH9Lt$LMILL$IM/L|$My@AWAVAUATUSHH8H~H5ܦH9l_H&HHhHt$,HHmHH$+HrD$,:HmdHHHHH<$IAHnIGHU.LeM;gIfME1E1HL$0HH5'fE11~sfD(I|LWI9OH|L_I9\OfA(fATE1f. AHE f/wTI9fTf.%rv\H9 E)E9f(HHĸH[]A\A]A^A_Df(L9JfTf.%grwEt prff.ADEEwImf(HLHL$DD$H$a#H$DD$f(HL$9HS=qHD$<$L;\$HL$(T$ L$HT$DD$Vf.$~-yrDD$HT$L$T$ fD(H5oHL$(\f(fTzL ěHL$(T$ LL$HT$DD$M9h5,qf(f.4$~-qDD$HT$T$ H5HL$(fD(H|L_I9G`E1E1J<D$EHL$0HHD$eHT$D$D$T$EI/L$?$DD$HT$~-qHL$T$ H5HL$(fD(uQ$\WDD$HT$~-pHT$ H5͙HL$(fD(NH9E E1H-H5MH}1Hֹ1H=JHmH$%$H3HHtE1ALeM9gqIDMfPLAIH4HuE1uDH=nf.nf(H<$I/LvHmH1\fAWHAVAUATUSHH7HQfLl$@IĽ Mt$t$1IfLf~-nHH H@H;CH+M%MOf(E1LL)Af(fTf(fTf/f(X|$(DD$(D\DD$0DL$0A\L$8DT$8fD.zD\$8T$(IGIAfD(fDTfD(fDTfE/fD(DXDt$(D|$(D\D|$0d$0\L$8L$8f.zo|$8IxIYT$(ICDD$8DL$(l$(EXEXfA(\T$0D$0fA.D$($HI,$uLM9HHH[]A\A]A^A_fE/\zZHH9HH9H4T$M9LHIT$fD(fDTifA.fD.vDL$DXDL$XD$D$DL$(L/!DT$fE.zGD$HH!IH3H HLT$HHHnH5CH: EfDAWHAVAUATUSH(zHHHHH&HtLhLHHD$I?GLAHLt$IAL$HIuIIHHI/HLJHHH1H>H;~H1D xHH5I1FHH)DI1HHHHD)HHHHAMmLl$L|$Ht$DHIL)L)HHHHD$wHt$IH.HmMpLHL)H2H+IH=MLL I.HLImLHAAtM(fDHH%IH1HH|I,$ALAEHmH(H[]A\A]A^A_AH\$DHHHHmH@H&LL$H1Ak>HIIH;D)I>ECI1F$@LH5I1BHoHnH;-C^8IHD$HH0H9XHHD$HH9XI~Hx1HLIHt$,L[T$,HD$HHI6HHI6HjL|$L%LHIMHHD$t#zfDLHHMII4$LaImIHHHϾI.Hu]LnHHMH;l$tWII4$LImIHHHvI.HQHPHH;l$I/#H|$LLD$IL LL$MLT$IMH8H[]A\A]A^A_Lt$L蓾IILAHL$MMEM}Ld$HHD$HLL$I9Yt5Ll$LHt$H|$1賾H|$Ht$,|$,HD$DL|$IMtGHl$H|$Hut%H\$HH|$H3L|$LH\$HH3{HiHLtHHuH5v=H:ƼHt$HHD$HH/L|$M/Ll$IM/19L1H=h;0*L˻LH5=I;@uLd$I$H\$HI$;1H ىH5;1HH9ƾ+#1HTf.SHH HH>ƽF_f(f.`H{\$T$蛽Dt$D|$$fA.D|$DL$~ _^HfE(fDTfA.4$fD(fDTfA.f.5^efA(fA(DL$DT$D\$谻Dd$D\$fD(DL$fA(\f/vjD~->_fA(fETfDV _EYfE.~ ^fE(^fDTfD.)iH fA([Mf/vD~-^fD(fA(fEWfA(fA(DL$A\Y?^D\$DT$̺DT$DL$XD\$D~-j^fA(D\"XDt$D<$裻<$t$Ht$<$?D $~ ]H]fE(Dd$fDTfA.D\D$$<$  $HH{L$#l$$f.Xl$裷~ []D$T$Ht\Dm\fDTfA.fD(rND$fD.U\I\<$fA.fD(fE.$f.fD.wfA(fTf.fA.HֹH=&7ιH 1[!fD(fA(D $ D $uxfA(D$$fA(fD()fA(fA(D $l$腹DD$HuDD$-D $D[HDd$fE( fE.uD$$fH=yHrH9tHHt H=IH5BH)HHH?HHtHHtfD= u/UH=Ht H= h]{f.H=YD@SYHOH54HH轸Y(H5q5HH薸YH5M4HHog1@۶H55HHIA1Z赶H55HH#[ff.ATAUHSH荷f. YD$D$Hf.f({ l$f.{t~Yf(XfTf.wnf.r;uHf([]A\f(L$L$tyͶHkH1[]A\HbH53H8賴t$fTf.rEtH]H52H:膴@UHSHH(HGt(H藶f.W{FH([]1uD$D$HtH߁H:菴bHt$H%f.W{ID$WfH*L$YXD$tH XH52H9詳1\uD$腵D$Hp@UHSHHHH;rf.V${vH{Zf.VD${OL$$Hf.f(zQ~}WfTf.Vwq;uSHf([]uԴHtuƴHzH1[]D $fD.L${!f( $ $u,$=!VfTf.rjHϺ tHH51ff.@HH5F1ff.@HH51off.@HH5Lff.HH5AHf(PUfT Vf.rff/v1Hf.zf/1Uw*!$UHD$ D$f!f.zTtf.HH5ff.HH5~1off.@HH5~1Off.@HHM~H9Fu(FfT"U JT1f.@HH蟲f.TzuD$hD$HHH .HH f.zl~Tf(SfTfTf.wSf.%Swff.E„t{~5TfTfV eTfTf. S{VfVT~Sf.wfTGTfVoT~=6TfTfV TfTf. 6SzufV"Tu驱fV!TUSHARHHC&HP8HHH111HH1HX[]!UHSHH|H9FtDH5HKHHt#H{H+HuHJHH[]軰Hu:Hΰf.NR{迱H[]锭uD$臰D$Ht1H~H;={tMATUHSHJH5H蟮HHt1HH+IuH螭L[]A\HW`HHIHHEH {H5;.HPH91走HD$聬D$!tC"fT#R SQ1f/vHH _{H5+H9舭H={H5+H?k@HH5{1ff.@HH5~{1ff.@HH5z1ff.@H8H}zH9FV-vPf.z}~@Q%hPfTf.wc1l$)\$ d$$f(D$$Mf(L$ |$D$DL$fTl$f.wFA\f(f.f(H8DHL-Of(f.{:f.HfA(fA(fW Pl$$l$\u,$ԭ,$H>Vz$豭$Hb3ff.H!yH9FuFYnO遬HH腭f.O{YKOHZuD$=D$Hʲff.HH5>y1ff.@Hf(1 Nf)H^Yf(X\XXf(H9|\ jNl$X賭d$HY@USHHHkH;H- xH9oo,$H{H9oW~Nf( MfTf.T$ߨL$$Hf.fD({@$$DD$fA.!fA(D $D $tH1[]Ã;uHfA([]鶪f.AM$/)胫H<$fTf.;Hf([]fif.Lf(D$&T$HNHֹH='ɪ-off.HH5@UHSHf.bL{RD$mD$HՃ;f(uHf([]锩D$L$tH1[]uD$YD$Htff.H8f(fD(%KfT Lf. ff.3fA(L$DL$贪T$DD$f.KfA/VfD/KD KfA(AXfE/l$DT$E\E\DYKfA(T$D^T$DD$DT$ Dd$fEDl$D$(fE/lfA(Dl$CD$D$bL$54K^t$D-KT$ ^fD/Y^t$(Y\t$l\ KD$UDL$D^fA(fT=Kf.=DJwAfA(H8A\fD(E\$J^fD(fTJf.JvDL$DL$"Sff/wE&Jf/7,H 6HD gf.]f/IO蜤D I!6D$Dl$Dt$(L$ %ID^AYAXL$L$f/vw\ ID$ DL$DYY ID$\ IDL$D^D^ff/v~f(8 fED^wY AID$\ ;I莥DL$DYDY/D$臣DL$fDT WIfDV I!^D H"f. Hf/vA`ffH=5L5YYX7AX0HHuf(^1ffH `5H4^^XXHHhuff.AWAVIAUATIUSHH2L|$M1f1~7H9IquyGfT1f.AD_@f(H L9|f(fTGf.Gv$M9f(_HĘ[]A\A]A^A_Å FH; 4q $dF $~Gf.f(Rd$F $~SGHt$1M9jsL $解 $EH<L|$転IH/蕤%F $~Ff.`ff.E„If(LLf(ff.@HH5f1off.@HH5aHf(pEfT 8Ff.rAff/v HD$TD$f!f.{2>EHf.zf/#EwE!uEUSHHHHH;H-nH9oHoH{H9oW~yEfD(%DfDTfA.fD(fDTfA.)\$ d$T$l$kL$D$H1fD(d$ Dl$fD(Dt$fETfE.DL$t$8HHf([]M)\$0d$ T$DT$l$ڞ|$DD$DL$f.L$ f(D$0YfE.z{fD.fATf.-yCfD.{lfEfE/v fD/諟IHHAH1I9KfT8?f.\$D$]L$T$f.D>fD/4f(L$T$ DT$D q>A\EXD$fA(\l>ךfED\$D|$f(\ =|$fE(fE/D\%/>DYAXvNfA(|$fTK>vD$D$e >\\$l$\\f(f(fT% >f.%1=w{f(H(@=f/ff/rJ=G=!f(f(fW==f.fH~HK=HD$|$f|$蹗|$"iH <$fTG=袙f(XL$菗H(T$,Hc4H\< <Yj~= $fTfV <HY\<;Y/~<fWY;f(К~<;\Y;譚~<\;k;Y芚~r<[ff.fHH5e,ff.UHSHH@H}HeH9_u,WH}H9_FOf(+H[]`pff.AWHHAVAUATUSH8HdHHH?舙IH6"HHۤL5dL9uL|$HL襘|$IHmLDHH`L9pLHc|$uwfffLI*H*HYH*f.zuH+IuH轕\ff/sfW:ff/sfW:Y{:f/sL-IHPHH趕I/HH+uHKHAL%ScL9eHmut$uHHl$L*IHt`HpL9L9HHA|$fI/H*Y\$\$uL貔LʔIHuImuL蓔H?D$ HH8H[]A\A]A^A_IL#DHPH+uCHL?Mt8LRHHtLLHoHmItH+uHMu1.|$YxH(|$ޡYHݡImNL轓AImuL詓$HLCILL耓"PALe11Ҿ1HD$(PjjӓH H1HYAPALleH1Hl$(Ujj蘓H HtHH8uQtImLE1VRALe1HT$(R1jjEH HrH8Hh謕IHZHHE'鯠ATUSHHH@HJHAHxH;H-^`H9oWH{H9oOI% 7ff.zuH@[]A\~=6f(-6fTf.fD(fDTfD.fD(ɿYD\fDTfTfA/sYfTfA/s1fA/@yH{HH9ogIu|ff/JT$f.4T$f()#D$輒T$L$H1$1ff.H4{AuHHpitaumath domain errormath range errorOO:logcopysignatan2(dd)ldexp(di)combdistfmodintermediate overflow in fsummath.fsum partials-inf + inf in fsumpermk must not exceed %lldpowremaindernextafter__ceil____floor__rel_tolabs_tolisclose__trunc__startprodmathacosacoshasinasinhatanatanhceildegreeserferfcexpm1fabsfactorialfloorfrexpgcdhypotisfiniteisinfisnanisqrtlcmlgammalog1plog10log2modfradianstrunculpmath.log requires 1 to 2 argumentstype %.100s doesn't define __trunc__ methodExpected an int as second argument to ldexp.n must be a non-negative integerk must be a non-negative integermin(n - k, k) must not exceed %lldUsing factorial() with floats is deprecatedfactorial() only accepts integral valuesfactorial() argument should not exceed %ldfactorial() not defined for negative valuesboth points must have the same number of dimensionsisqrt() argument must be nonnegativetolerances must be non-negativeOj(This module provides access to the mathematical functions defined by the C standard.hypot(*coordinates) -> value Multidimensional Euclidean distance from the origin to a point. Roughly equivalent to: sqrt(sum(x**2 for x in coordinates)) For a two dimensional point (x, y), gives the hypotenuse using the Pythagorean theorem: sqrt(x*x + y*y). For example, the hypotenuse of a 3/4/5 right triangle is: >>> hypot(3.0, 4.0) 5.0 x_7a(s(;LXww0uw~Cs+|g!tanh($module, x, /) -- Return the hyperbolic tangent of x.tan($module, x, /) -- Return the tangent of x (measured in radians).sqrt($module, x, /) -- Return the square root of x.sinh($module, x, /) -- Return the hyperbolic sine of x.sin($module, x, /) -- Return the sine of x (measured in radians).remainder($module, x, y, /) -- Difference between x and the closest integer multiple of y. Return x - n*y where n*y is the closest integer multiple of y. In the case where x is exactly halfway between two multiples of y, the nearest even value of n is used. The result is always exact.log1p($module, x, /) -- Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero.lgamma($module, x, /) -- Natural logarithm of absolute value of Gamma function at x.gamma($module, x, /) -- Gamma function at x.fabs($module, x, /) -- Return the absolute value of the float x.expm1($module, x, /) -- Return exp(x)-1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.exp($module, x, /) -- Return e raised to the power of x.erfc($module, x, /) -- Complementary error function at x.erf($module, x, /) -- Error function at x.cosh($module, x, /) -- Return the hyperbolic cosine of x.cos($module, x, /) -- Return the cosine of x (measured in radians).copysign($module, x, y, /) -- Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns -1.0. atanh($module, x, /) -- Return the inverse hyperbolic tangent of x.atan2($module, y, x, /) -- Return the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are considered.atan($module, x, /) -- Return the arc tangent (measured in radians) of x. The result is between -pi/2 and pi/2.asinh($module, x, /) -- Return the inverse hyperbolic sine of x.asin($module, x, /) -- Return the arc sine (measured in radians) of x. The result is between -pi/2 and pi/2.acosh($module, x, /) -- Return the inverse hyperbolic cosine of x.acos($module, x, /) -- Return the arc cosine (measured in radians) of x. The result is between 0 and pi.lcm($module, *integers) -- Least Common Multiple.gcd($module, *integers) -- Greatest Common Divisor.??@@8@^@@@@&AKAAA2A(;L4BuwsBuwB7Bs6Ch0{CZAC Ƶ;(DlYaRwNDAiAApqAAqqiA{DAA@@P@?CQBWLup#B2 B&"B补A?tA*_{ A]v}ALPEA뇇BAX@R;{`Zj@' @ulp($module, x, /) -- Return the value of the least significant bit of the float x.nextafter($module, x, y, /) -- Return the next floating-point value after x towards y.comb($module, n, k, /) -- Number of ways to choose k items from n items without repetition and without order. Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n. Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial expansion of the expression (1 + x)**n. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.perm($module, n, k=None, /) -- Number of ways to choose k items from n items without repetition and with order. Evaluates to n! / (n - k)! when k <= n and evaluates to zero when k > n. If k is not specified or is None, then k defaults to n and the function returns n!. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.prod($module, iterable, /, *, start=1) -- Calculate the product of all the elements in the input iterable. The default start value for the product is 1. When the iterable is empty, return the start value. This function is intended specifically for use with numeric values and may reject non-numeric types.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) -- Determine whether two floating point numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.isinf($module, x, /) -- Return True if x is a positive or negative infinity, and False otherwise.isnan($module, x, /) -- Return True if x is a NaN (not a number), and False otherwise.isfinite($module, x, /) -- Return True if x is neither an infinity nor a NaN, and False otherwise.radians($module, x, /) -- Convert angle x from degrees to radians.degrees($module, x, /) -- Convert angle x from radians to degrees.pow($module, x, y, /) -- Return x**y (x to the power of y).dist($module, p, q, /) -- Return the Euclidean distance between two points p and q. The points should be specified as sequences (or iterables) of coordinates. Both inputs must have the same dimension. Roughly equivalent to: sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))fmod($module, x, y, /) -- Return fmod(x, y), according to platform C. x % y may differ.log10($module, x, /) -- Return the base 10 logarithm of x.log2($module, x, /) -- Return the base 2 logarithm of x.log(x, [base=math.e]) Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x.modf($module, x, /) -- Return the fractional and integer parts of x. Both results carry the sign of x and are floats.ldexp($module, x, i, /) -- Return x * (2**i). This is essentially the inverse of frexp().frexp($module, x, /) -- Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e. If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.trunc($module, x, /) -- Truncates the Real x to the nearest Integral toward 0. Uses the __trunc__ magic method.factorial($module, x, /) -- Find x!. Raise a ValueError if x is negative or non-integral.isqrt($module, n, /) -- Return the integer part of the square root of the input.fsum($module, seq, /) -- Return an accurate floating point sum of values in the iterable seq. Assumes IEEE-754 floating point arithmetic.floor($module, x, /) -- Return the floor of x as an Integral. This is the largest integer <= x.ceil($module, x, /) -- Return the ceiling of x as an Integral. This is the smallest integer >= x.-DT! @iW @-DT!@8,6V??@(J? T0CcܥL@7@#B ;i@E@E@-DT! a@??@9RFߑ?HP??@@& .>?-DT!?!3|@-DT!?-DT! @;tmY^^^x^ ^t^_8_1_5_0<__ _ _\ ` N` g`$ n` aD Bb xb b0 b 1ccctd%fffugg_hHOi0j0km qPrrLrpsP0ttDuv4 wp p{ |t X D 0@p@`(< p@P @Ъl  0 8 ЭL `  p p 04H 00н0, 0, H@d`x\pzRx $UFJ w?;*3$"DZ\Ƞ pĠAzRx  lZ(eHAG j AM z CC zRx   Z@ BDD D0r  EABE s  CABA \fD0q K  A zRx 0Y0gBDA DP  DABA zRx P$DY:(ADG@r AAA zRx @ "YpkD h E T A Dlhe ` E zRx  XFll4()ADG0~ EAE b CAA zRx 0 LX)ThkDn E y L zRx XClD ^ E U$D h E g A DplD ^ E Udx $iD p E VFHlKBB D(D0D@ 0A(A BBBA f zRx @(VgTh$|lD0p E N I ^(VCF A w4mqAQ0k DAA AAA$,OAAE AAAzRx   .VBGH4XADD0A DAA e AAE 4OAD BABAP zRx  $U0hmBAD D@   AABF zRx @$EU=dP|D } A RU`pD0a K 4;UFp|Hp|BBB B(A0A8Gpy 8D0A(B BBBA zRx p(TgHuBBB B(A0A8Gp 8D0A(B BBBF Um<`}%FH D(K0k(D ABBEzRx 0$U6X BBB B(A0A8J 8D0A(B BBBF $zRx ,T\ p lD c@ lAAG0 CAA I FAE E EAE L :BEB B(A0A8G 8D0A(B BBBA $zRx ,qTX L 4l HADD0x EAE Y CAA  D@ A  DH BBE B(D0A8G 8A0A(B BBBA $zRx ,S(|\ BEB B(A0A8D`{ 8D0A(B BBBA  8H0A(B BBBE v 8C0A(B BBBE zRx `(aS p( |< xD h E m A H\ BIB B(D0D8Dp' 8D0A(B BBBA `SB8 AAG` EAE  CAA zRx ` Tg(,UD o E  TP,XlAG0p FE K CA zRx 0 }T`KBE B(A0D8DP+ 8D0A(B BBBA vJP zRx P(T>Th |D0U A ЮD  E ԯ(UADD0@ AAE  Te CAA P8BHB B(A0A8Dp9 8D0A(B BBBA x^BBIpVxXBBIpoxUDBIpT@gBAA J`z  AABA hXpBxBI`zRx `$Td0{zSD  0 $o`   h'h oHooloH60F0V0f0v00000000011&161F1V1f1v11111111122&262F2V2f2v22222222233&363F3V3f3v33333333344&464F4V4f4v44444444455װ0@@ P{`!P@',p`2:P@7=1`I J"B`UaJ@NG@S Y^@XhM@Z nRftK`x~IH m@Д EN  -CL`pðu`(J- B3 8±0`` qPR Ͱȱ`GCC: (Debian 8.3.0-6) 8.3.0.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.plt.data.bss.comment 88$o``$(  0 8ollEoHH`Th^B''hh00c 0 0n 5 5w0505k}$$ & txH HHr((`  0