
Design Issues in Matrix package Development

Martin Maechler and Douglas Bates
R Core Development Team

maechler@stat.math.ethz.ch, bates@r-project.org

Spring 2008; Aug 2022 (typeset on January 11, 2024)

Abstract

This is a (currently very incomplete) write-up of the many smaller
and larger design decisions we have made in organizing functionalities in
the Matrix package.

Classes: There’s a rich hierarchy of matrix classes, which you can
visualize as a set of trees whose inner (and “upper”) nodes are virtual

classes and only the leaves are non-virtual “actual” classes.
Functions and Methods:
- setAs()
- others

1 The Matrix class structures

Take Martin’s DSC 2007 talk to depict the Matrix class hierarchy; available
from https://stat.ethz.ch/~maechler/R/DSC-2007_MatrixClassHierarchies.pdf

.
— — —
From far, there are three separate class hierarchies, and every Matrix pack-

age matrix has an actual (or “factual”) class inside these three hierarchies: More
formally, we have three (3) main “class classifications” for our Matrices, i.e.,
three “orthogonal” partitions of “Matrix space”, and every Matrix object’s class
corresponds to an intersection of these three partitions; i.e., in R’s S4 class
system: We have three independent inheritance schemes for every Matrix, and
each such Matrix class is simply defined to contain three virtual classes (one
from each partitioning scheme), e.g,

The three partioning schemes are

1. Content type: Classes dMatrix, lMatrix, nMatrix, (iMatrix, zMatrix)
for entries of type double, logical, pattern (and not yet integer and com-
plex) Matrices.

nMatrix only stores the location of non-zero matrix entries (where as
logical Matrices can also have NA entries!)

1

mailto:maechler@stat.math.ethz.ch
mailto:bates@r-project.org
https://stat.ethz.ch/~maechler/R/DSC-2007_MatrixClassHierarchies.pdf

2. structure: general, triangular, symmetric, diagonal Matrices

3. sparsity: denseMatrix, sparseMatrix

For example in the most used sparseMatrix class, "dgCMatrix", the three
initial letters dgC each codes for one of the three hierarchies:

d: double

g: general

C: CsparseMatrix, where C is for Column-compressed.

Part of this is visible from printing getClass("<classname> "):

> getClass("dgCMatrix")

Class "dgCMatrix" [package "Matrix"]

Slots:

Name: i p Dim Dimnames x factors

Class: integer integer integer list numeric list

Extends:

Class "CsparseMatrix", directly

Class "dsparseMatrix", directly

Class "generalMatrix", directly

Class "dMatrix", by class "dsparseMatrix", distance 2

Class "sparseMatrix", by class "dsparseMatrix", distance 2

Class "compMatrix", by class "generalMatrix", distance 2

Class "Matrix", by class "CsparseMatrix", distance 3

Class "replValueSp", by class "Matrix", distance 4

Another example is the "nsTMatrix" class, where nsT stands for

n: n is for “pattern”, boolean content where only the locations of the non-zeros
need to be stored.

t: triangular matrix; either Upper, or Lower.

T: TsparseMatrix, where T is for Triplet, the simplest but least efficient way
to store a sparse matrix.

From R itself, via getClass(.):

> getClass("ntTMatrix")

Class "ntTMatrix" [package "Matrix"]

Slots:

2

Name: i j Dim Dimnames uplo diag

Class: integer integer integer list character character

Extends:

Class "TsparseMatrix", directly

Class "nsparseMatrix", directly

Class "triangularMatrix", directly

Class "nMatrix", by class "nsparseMatrix", distance 2

Class "sparseMatrix", by class "nsparseMatrix", distance 2

Class "Matrix", by class "triangularMatrix", distance 2

Class "replValueSp", by class "Matrix", distance 4

1.1 Diagonal Matrices

The class of diagonal matrices is worth mentioning for several reasons. First,
we have wanted such a class, because multiplication methods are particularly
simple with diagonal matrices. The typical constructor is Diagonal() whereas
the accessor (as for traditional matrices), diag() simply returns the vector of
diagonal entries:

> (D4 <- Diagonal(4, 10*(1:4)))

4 x 4 diagonal matrix of class "ddiMatrix"

[,1] [,2] [,3] [,4]

[1,] 10 . . .

[2,] . 20 . .

[3,] . . 30 .

[4,] . . . 40

> str(D4)

Formal class 'ddiMatrix' [package "Matrix"] with 4 slots

..@ diag : chr "N"

..@ Dim : int [1:2] 4 4

..@ Dimnames:List of 2

.. ..$: NULL

.. ..$: NULL

..@ x : num [1:4] 10 20 30 40

> diag(D4)

[1] 10 20 30 40

We can modify the diagonal in the traditional way (via method definition for
diag<-()):

> diag(D4) <- diag(D4) + 1:4

> D4

3

4 x 4 diagonal matrix of class "ddiMatrix"

[,1] [,2] [,3] [,4]

[1,] 11 . . .

[2,] . 22 . .

[3,] . . 33 .

[4,] . . . 44

Note that unit-diagonal matrices (the identity matrices of linear algebra)
with slot diag = "U" can have an empty x slot, very analogously to the unit-
diagonal triangular matrices:

> str(I3 <- Diagonal(3)) ## empty 'x' slot

Formal class 'ddiMatrix' [package "Matrix"] with 4 slots

..@ diag : chr "U"

..@ Dim : int [1:2] 3 3

..@ Dimnames:List of 2

.. ..$: NULL

.. ..$: NULL

..@ x : num(0)

> getClass("diagonalMatrix") ## extending "sparseMatrix"

Virtual Class "diagonalMatrix" [package "Matrix"]

Slots:

Name: diag Dim Dimnames

Class: character integer list

Extends:

Class "sparseMatrix", directly

Class "Matrix", by class "sparseMatrix", distance 2

Class "replValueSp", by class "Matrix", distance 3

Known Subclasses: "ndiMatrix", "ldiMatrix", "ddiMatrix"

Originally, we had implemented diagonal matrices as dense rather than sparse
matrices. After several years it became clear that this had not been helpful
really both from a user and programmer point of view. So now, indeed the
"diagonalMatrix" class does also extend "sparseMatrix", i.e., is a subclass of
it. However, we do not store explicitly where the non-zero entries are, and the
class does not extend any of the typical sparse matrix classes, "CsparseMatrix",
"TsparseMatrix", or "RsparseMatrix". Rather, the diag()onal (vector) is the
basic part of such a matrix, and this is simply the x slot unless the diag slot is
"U", the unit-diagonal case, which is the identity matrix.

Further note, e.g., from the ? Diagonal help page, that we provide (low
level) utility function .sparseDiagonal() with wrappers .symDiagonal() and

4

.trDiagonal() which will provide diagonal matrices inheriting from "CsparseMatrix"

which may be advantageous in some cases, but less efficient in others, see the
help page.

2 Matrix Transformations

2.1 Coercions between Matrix classes

You may need to transform Matrix objects into specific shape (triangular,
symmetric), content type (double, logical, . . .) or storage structure (dense
or sparse). Every useR should use as(x, <superclass>) to this end, where
<superclass> is a virtual Matrix super class, such as "triangularMatrix"

"dMatrix", or "sparseMatrix".
In other words, the user should not coerce directly to a specific desired class

such as "dtCMatrix", even though that may occasionally work as well.
Here is a set of rules to which the Matrix developers and the users should

typically adhere:

Rule 1 : as(M, "matrix") should work for all Matrix objects M.

Rule 2 : Matrix(x) should also work for matrix like objects x and always
return a “classed” Matrix.

Applied to a "matrix" object m, M. <- Matrix(m) can be considered a
kind of inverse of m <- as(M, "matrix"). For sparse matrices however,
M. well be a CsparseMatrix, and it is often “more structured” than M, e.g.,

> (M <- spMatrix(4,4, i=1:4, j=c(3:1,4), x=c(4,1,4,8))) # dgTMatrix

4 x 4 sparse Matrix of class "dgTMatrix"

[1,] . . 4 .

[2,] . 1 . .

[3,] 4 . . .

[4,] . . . 8

> m <- as(M, "matrix")

> (M. <- Matrix(m)) # dsCMatrix (i.e. *symmetric*)

4 x 4 sparse Matrix of class "dsCMatrix"

[1,] . . 4 .

[2,] . 1 . .

[3,] 4 . . .

[4,] . . . 8

Rule 3 : All the following coercions to virtual matrix classes should work:

5

1. as(m, "dMatrix")

2. as(m, "lMatrix")

3. as(m, "nMatrix")

4. as(m, "denseMatrix")

5. as(m, "sparseMatrix")

6. as(m, "generalMatrix")

whereas the next ones should work under some assumptions:

1. as(m1, "triangularMatrix")

should work when m1 is a triangular matrix, i.e. the upper or lower
triangle of m1 contains only zeros.

2. as(m2, "symmetricMatrix") should work when m2 is a symmetric
matrix in the sense of isSymmetric(m2) returning TRUE. Note that
this is typically equivalent to something like isTRUE(all.equal(m2,
t(m2))), i.e., the lower and upper triangle of the matrix have to be
equal up to small numeric fuzz.

3 Session Info

> toLatex(sessionInfo())

• R version 4.3.2 Patched (2024-01-06 r85799), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=de_CH.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=de_CH.UTF-8,
LC_PAPER=de_CH.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=de_CH.UTF-8, LC_IDENTIFICATION=C

• Time zone: Europe/Zurich

• TZcode source: system (glibc)

• Running under: Fedora Linux 38 (Thirty Eight)

• Matrix products: default

• BLAS: /u/maechler/R/D/r-patched/F38-64-inst/lib/libRblas.so

• LAPACK: /usr/lib64/liblapack.so.3.11.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: Matrix 1.6-5

• Loaded via a namespace (and not attached): compiler 4.3.2, grid 4.3.2,
lattice 0.22-5, tools 4.3.2

6

	The Matrix class structures
	Diagonal Matrices

	Matrix Transformations
	Coercions between Matrix classes

	Session Info

