
Rcpp FAQ
Dirk Eddelbuettela and Romain Françoisb

ahttp://dirk.eddelbuettel.com; bhttps://romain.rbind.io/

This version was compiled on November 11, 2023

This document attempts to answer the most Frequently Asked Questions

(FAQ) regarding the Rcpp (Eddelbuettel et al., 2023a; Eddelbuettel and

François, 2011; Eddelbuettel, 2013) package.

Rcpp | FAQ | R | C++

Contents

1 Getting started 1

1.1 How do I get started 1

1.2 What do I need . 2

1.3 What compiler can I use 2

1.4 What other packages are useful 2

1.5 What licenses can I choose for my code 2

2 Compiling and Linking 2

2.1 How do I use Rcpp in my package 2

2.2 How do I quickly prototype my code 2

2.2.1 Using inline . 2

2.2.2 Using Rcpp Attributes 3

2.3 How do I convert my prototyped code to a package 3

2.4 How do I quickly prototype my code in a package . 3

2.5 But I want to compile my code with R CMD SHLIB 3

2.6 But R CMD SHLIB still does not work 3

2.7 What about LinkingTo 4

2.8 Does Rcpp work on windows 4

2.9 Can I use Rcpp with Visual Studio 4

2.10 I am having problems building Rcpp on macOS, any

help . 4

2.10.1 Lack of a Compiler 4

2.10.2 Differing macOS R Versions Leading to Bi-

nary Failures 4

2.10.3 OpenMP Support 4

2.10.4 Additional Information and Help 4

2.11 Does Rcpp work on solaris/suncc 4

2.12 Does Rcpp work with REvolution R 4

2.13 Is it related to Rho (formerly CXXR) 4

2.14 How do I quickly prototype my code using Attributes 4

2.15 What about the ‘no-linking’ feature 5

2.16 I am having problems building RcppArmadillo on

macOS, any help . 5

3 Examples 5

3.1 Can I use templates with Rcpp 5

3.1.1 Using inline with Templated Code 5

3.1.2 Using Rcpp Attributes with Templated Code 5

3.2 Can I do matrix algebra with Rcpp 5

3.2.1 Using inline with RcppArmadillo 6

3.2.2 Using Rcpp Attributes with RcppArmadillo . 6

3.3 Can I use code from the Rmath header and library

with Rcpp . 6

3.4 Can I use NA and Inf with Rcpp 6

3.5 Can I easily multiply matrices 7

3.6 How do I write a plugin for inline and/or Rcpp

Attributes . 7

3.7 How can I pass one additional flag to the compiler 7

3.8 How can I set matrix row and column names 8

3.9 Why can long long types not be cast correctly 8

3.10 What LaTeX packages do I need to typeset the vignettes 8

3.11 Why is there a limit of 20 on some constructors . . 8

3.12 Can I use default function parameters with Rcpp . . 9

3.13 Can I use C++11, C++14, C++17, . . . with Rcpp . 9

3.14 How do I use it within (Python’s) Conda setup? . . 9

3.15 Can I speed up compilation? 9

4 Support 9

4.1 Is the API documented 9

4.2 Does it really work . 9

4.3 Where can I ask further questions 10

4.4 Where can I read old questions and answers 10

4.5 I like it. How can I help 10

4.6 I don’t like it. How can I help 10

4.7 Can I have commercial support for Rcpp 10

4.8 I want to learn quickly. Do you provide training

courses . 10

4.9 Where is the code repository 10

5 Known Issues 10

5.1 Rcpp changed the (const) object I passed by value . 10

5.2 Issues with implicit conversion from an Rcpp object

to a scalar or other Rcpp object 11

5.3 Using operator= with a scalar replaced the object

instead of filling element-wise 11

5.4 Long Vector support on Windows 12

5.5 Sorting with STL on a CharacterVector produces

problematic results . 12

5.6 Lexicographic order of string sorting differs due to

capitalization . 13

5.7 Package building fails with ‘symbols not found’ . . . 13

5.8 Can we use exceptions and stop() across shared

libraries? . 13

5.9 My package errors with “ ‘dataptr’ not provided by

Rcpp” . 13

5.10 On macOS, ‘no matching function for call to

R_lsInternal’ . 13

5.11 Can we grow Rcpp vectors like STL vectors via ’push*’ 13

5.12 Converting a large number of Date objects seems slow 14

1. Getting started

1.1. How do I get started. If you have Rcpp installed, please execute

the following command in R to access the introductory vignette

(which is a variant of the Eddelbuettel and François (2011) and

Eddelbuettel and Balamuta (2017, 2018) papers) for a detailed in-

troduction, ideally followed by at least the Rcpp Attributes (Allaire

et al., 2023) vignette:

https://cran.r-project.org/package=Rcpp Rcpp FAQ Vignette | November 11, 2023 | 1–14

vignette("Rcpp-jss-2011")

vignette("Rcpp-introduction")

vignette("Rcpp-attributes")

If you do not have Rcpp installed, these documents should also

be available whereever you found this document, i.e., on every

mirror site of CRAN.

1.2. What do I need. Obviously, R must be installed. Rcpp provides

a C++ API as an extension to the R system. As such, it is bound by

the choices made by R and is also influenced by how R is configured.

In general, the standard environment for building a CRAN pack-

age from source (particularly when it contains C or C++ code) is

required. This means one needs:

• a development environment with a suitable compiler (see

below), header files and required libraries;

• R should be built in a way that permits linking and pos-

sibly embedding of R; this is typically ensured by the

--enable-shared-lib option;

• standard development tools such as make etc.

Also see the RStudio documentation on pre-requisites for R

package development.

1.3. What compiler can I use. On almost all platforms, the GNU

Compiler Collection (or gcc, which is also the name of its C lan-

guage compiler) can be used along with the corresponding g++

compiler for the C++ language. Depending on which C++ compi-

lation standard one wishes to use, a suitably recent variant of the

compiler may be needed. But these days the minimum standard of

C++11 is generally available, and the default compilers on all the

common platforms are now suitable.

Specific per-platform notes:

Windows users need the Rtools package from the site maintained

by Tomas Kalibera which contains all the required tools in

a single package; complete instructions specific to Windows

are in the "R Administration" manual (R Core Team, 2023a,

Appendix D).

macOS users, as noted in the "R Administration" manual (R Core

Team, 2023a, Appendix C.4), need to install the Apple De-

veloper Tools (e.g., Xcode Command Line Tools (as well as

gfortran if R or Fortran-using packages are to be built); also

see FAQ 2.10 and FAQ 2.16 below. This is frustratingly mov-

ing target; consult the r-sig-mac list (and its archives) for

(current) details.

Linux user need to install the standard developement packages.

Some distributions provide helper packages which pull in all

the required packages; the r-base-dev package on Debian

and Ubuntu is an example.

The clang and clang++ compilers from the LLVM project can

also be used. On Linux, they are inter-operable with gcc et al. On

macOS, they are unfortunately not ABI compatible.

In general, any compiler supported by R itself can be used.

1.4. What other packages are useful. Additional packages that we

have found useful are inline if one wants to create compiled func-

tions without the help of Rcpp as well as the different benchmarking

and unit testing packages. A short list follows, it is not meant to

be exhaustive as CRAN by now has many helpful packages:

inline which is invaluable for direct compilation, linking and load-

ing of short code snippets—but now effectively superseded

by the Rcpp Attributes (see FAQ 2.2.2 and FAQ 2.14) feature

provided by Rcpp;

RUnit, tinytest, testthat can be used for unit testing; Rcpp uses

tinytest as it is ligthweight and installs the tests along with

the package by default but note that no testing package is

required: all are optional;

rbenchmark, microbenchmark to run simple timing compar-

isons and benchmarks; they are also recommended but not

required.

1.5. What licenses can I choose for my code. The Rcpp package

is licensed under the terms of the GNU GPL 2 or later, just like R

itself. A key goal of the Rcpp package is to make extending R more

seamless. But by linking your code against R (as well as Rcpp),

the combination is bound by the GPL as well. This is very clearly

stated at the FSF website:

Linking a GPL covered work statically or dynamically

with other modules is making a combined work based

on the GPL covered work. Thus, the terms and condi-

tions of the GNU General Public License cover the whole

combination.

So you are free to license your work under whichever terms

you find suitable (provided they are GPL-compatible, see the FSF

site for details). However, the combined work will remain under

the terms and conditions of the GNU General Public License. This

restriction comes from both R which is GPL-licensed as well as from

Rcpp and whichever other GPL-licensed components you may be

linking against.

2. Compiling and Linking

2.1. How do I use Rcpp in my package. Rcpp has been specifically

designed to be used by other packages. Making a package that uses

Rcpp depends on the same mechanics that are involved in making

any R package that use compiled code — so reading the Writing R

Extensions manual (R Core Team, 2023c) is a required first step.

Further steps, specific to Rcpp, are described in a separate

vignette.

vignette("Rcpp-package")

2.2. How do I quickly prototype my code. There are two toolchains

which can help with this:

• The older one is provided by the inline package and described

in Section~2.2.1.

• Starting with Rcpp 0.10.0, the Rcpp Attributes feature (de-

scribed in Section~2.2.2) offered an even easier alternative

via the function evalCpp, cppFunction and sourceCpp.

The next two subsections show an example each.

2.2.1. Using inline. The inline package (Sklyar et al., 2021) provides

the functions cfunction and cxxfunction. Below is a simple

function that uses accumulate from the (C++) Standard Template

Library to sum the elements of a numeric vector.

2 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

fx <- cxxfunction(signature(x = "numeric"),

'NumericVector xx(x);

return wrap(std::accumulate(xx.begin(),

xx.end(), 0.0));',

plugin = "Rcpp")

res <- fx(seq(1, 10, by=0.5))

res

[1] 104.5

One might want to use code that lives in a C++ file instead of

writing the code in a character string in R. This is easily achieved

by using readLines:

fx <- cxxfunction(signature(),

paste(readLines("myfile.cpp"),

collapse="\n"),

plugin = "Rcpp")

The verbose argument of cxxfunction is very useful as it

shows how inline runs the show.

2.2.2. Using Rcpp Attributes. Rcpp Attributes (Allaire et al., 2023),

and also discussed in FAQ 2.14 below, permits an even easier route

to integrating R and C++. It provides three key functions. First,

evalCpp provide a means to evaluate simple C++ expression which

is often useful for small tests, or to simply check if the toolchain

is set up correctly. Second, cppFunction can be used to create

C++ functions for R use on the fly. Third, Rcpp::sourceCpp can

integrate entire files in order to define multiple functions.

The example above can now be rewritten as:

cppFunction('double accu(NumericVector x) {

return(std::accumulate(x.begin(), x.end(), 0.0));

}')

res <- accu(seq(1, 10, by=0.5))

res

[1] 104.5

The cppFunction parses the supplied text, extracts the desired

function names, creates the required scaffolding, compiles, links

and loads the supplied code and makes it available under the

selected identifier.

Similarly, sourceCpp can read in a file and compile, link and

load the code therein.

2.3. How do I convert my prototyped code to a package. Since

release 0.3.5 of inline, one can combine FAQ 2.2.1 and FAQ 2.1. See

help("package.skeleton-methods") once inline is loaded and

use the skeleton-generating functionality to transform a prototyped

function into the minimal structure of a package. After that you

can proceed with working on the package in the spirit of FAQ 2.1.

Rcpp Attributes (Allaire et al., 2023) also offers a means to

convert functions written using Rcpp Attributes into a function via

the compileAttributes function; see the vignette for details.

2.4. How do I quickly prototype my code in a package. The simplest

way may be to work directly with a package. Changes to both the

R and C++ code can be compiled and tested from the command

line via:

$ R CMD INSTALL mypkg && \

Rscript --default-packages=mypkg -e \

'someFunctionToTickle(3.14)'

This first installs the packages, and then uses the command-line

tool Rscript (which ships with R) to load the package, and execute

the R expression following the -e switch. Such an expression can

contain multiple statements separated by semicolons. Rscript is

available on all three core operating systems.

On Linux, one can also use r from the littler package (Ed-

delbuettel and Horner, 2023) which is an alternative front end to

R designed for both #! (hashbang) scripting and command-line

use. It has slightly faster start-up times than Rscript; and both

give a guaranteed clean slate as a new session is created.

The example then becomes

$ R CMD INSTALL mypkg && \

r -l mypkg -e 'someFunctionToTickle(3.14)'

The -l option calls ‘suppressMessages(library(mypkg))’ before

executing the R expression. Several packages can be listed, sepa-

rated by a comma.

More choices are provided by other packages and IDEs. See

their respective documentation for details.

2.5. But I want to compile my code with R CMD SHLIB. The rec-

ommended way is to create a package and follow FAQ 2.1. The

alternate recommendation is to use inline and follow FAQ 2.2.1

because it takes care of all the details.

However, some people have shown that they prefer not to fol-

low recommended guidelines and compile their code using the

traditional R CMD SHLIB. To do so, we need to help SHLIB and

let it know about the header files that Rcpp provides and the C++

library the code must link against.

On the Linux command-line, you can do the following:

$ export PKG_CXXFLAGS=\

`Rscript -e "Rcpp:::CxxFlags()"`

$ R CMD SHLIB myfile.cpp

which first defines and exports two relevant environment vari-

ables which R CMD SHLIB then relies on. On other operating sys-

tems, appropriate settings may have to be used to define the envi-

ronment variables.

This approach corresponds to the very earliest ways of building

programs and can still be found in some deprecated documents

(as e.g. some of Dirk’s older ‘Intro to HPC with R’ tutorial slides).

It is still not recommended as there are tools and automation

mechanisms that can do the work for you.

Note that we always need to set PKG_CXXFLAGS (or equally

PKG_CPPFLAGS) to tell R where the Rcpp headers files are located.

Once R CMD SHLIB has created the dyanmically-loadable file

(with extension .so on Linux, .dylib on macOS or .dll on Win-

dows), it can be loaded in an R session via dyn.load, and the

function can be executed via .Call. Needless to say, we strongly

recommend using a package, or at least Rcpp Attributes as either ap-

proach takes care of a lot of these tedious and error-prone manual

steps.

2.6. But R CMD SHLIB still does not work. We have had reports

in the past where build failures occurred when users had non-

standard code in their ~/.Rprofile or Rprofile.site (or equiv-

alent) files.

Eddelbuettel and François Rcpp FAQ Vignette | November 11, 2023 | 3

If such code emits text on stdout, the frequent and implicit

invocation of Rscript -e "..." (as in FAQ 2.5 above) to retrieve

settings directly from Rcpp will fail.

You may need to uncomment such non-standard code, or protect

it by wrapping it inside if (interactive()), or possibly try to

use Rscript --vanilla instead of plain Rscript.

2.7. What about LinkingTo. R has only limited support for cross-

package linkage.

We now employ the LinkingTo field of the DESCRIPTION file

of packages using Rcpp. But this only helps in having R compute

the location of the header files for us.

The actual library location and argument still needs to be pro-

vided by the user. This topic can get complicated real quickly,

and there is an entire vignette devoted to it, so see Eddelbuettel

(2023b).

Also note that an important change arrived with Rcpp release

0.11.0 and concerns the automatic registration of functions; see

Section 2.15 below.

2.8. Does Rcpp work on windows. Yes of course. See the Windows

binaries provided by CRAN.

2.9. Can I use Rcpp with Visual Studio. Not a chance.

And that is not because we are meanies but because R and Visual

Studio simply do not get along. As Rcpp is all about extending R

with C++ interfaces, we are bound by the available toolchain. And

R simply does not compile with Visual Studio. Go complain to its

vendor if you are still upset.

(These days the ‘Code’ editor derived from it is popular and can

of course be used with R and Rcpp; see its documentation for the

required plugins. Such use still falls back to the default compilers

R is used with on the given system so see FAQ 1.3 above.)

2.10. I am having problems building Rcpp on macOS, any help.

There are three known issues regarding Rcpp build problems on

macOS. If you are building packages with RcppArmadillo, there is

yet another issue that is addressed separately in FAQ 2.16 below.

2.10.1. Lack of a Compiler. By default, macOS does not ship with an

active compiler. Depending on the R version being used, there

are different development environment setup procedures. For the

current R version, we recommend observing the official procedure

used in Section 6.3.2 macOS and Section C.3 macOS of the R

Installation and Administration manual.

2.10.2. Differing macOS R Versions Leading to Binary Failures. There

are three (or more) distinct versions of R for macOS. The first

version is a legacy version meant for macOS 10.6 (Snow Leopard)

- 10.8 (Mountain Lion). The second version is for more recent

system macOS 10.9 (Mavericks) and 10.10 (Yosemite). Finally,

the third and most up-to-date version supports macOS 10.11 (El

Capitan), 10.12 (Sierra), and 10.13 (High Sierra). The distinction

comes as a result of a change in the compilers shipped with the

operating system as highlighted previously. As a result, avoid

sending package binaries to collaborators if they are working on

older operating systems as the R binaries for these versions will not

be able to mix. In such cases, it is better to provide collaborators

with the package source and allow them to build the package

locally.

2.10.3. OpenMP Support. By default, the macOS operating environ-

ment lacks the ability to parallelize sections of code using the

OpenMP standard. Within R 3.4.*, the default developer environ-

ment was changed to allow for OpenMP to be used on macOS by

using a non-default toolchain provided by R Core Team maintain-

ers for macOS. Having said this, it is still important to protect any

reference to OpenMP as some users may not yet have the ability to

use OpenMP.

To setup the appropriate protection for using OpenMP, the pro-

cess is two-fold. First, protect the inclusion of headers with:

#ifdef _OPENMP

#include <omp.h>

#endif

Second, when parallelizing portions of code use:

#ifdef _OPENMP

// multithreaded OpenMP version of code

#else

// single-threaded version of code

#endif

Under this approach, the code will be safely parallelized when

support exists for OpenMP on Windows, macOS, and Linux.

2.10.4. Additional Information and Help. Below are additional resources

that provide information regarding compiling Rcpp code on macOS.

1. A helpful post was provided by Brian Ripley regarding the

use of compiling R code with macOS in April 2014 on the

r-sig-mac list, which is generally recommended for macOS-

specific questions and further consultation.

2. Another helpful write-up for installation / compilation on

macOS Mavericks is provided by the BioConductor project.

3. Lastly, another resource that exists for installation / com-

pilation help is provided at http://thecoatlessprofessor.com/

programming/r-compiler-tools-for-rcpp-on-os-x/.

Note: If you are running into trouble compiling code with

RcppArmadillo, please also see FAQ 2.16 listed below.

2.11. Does Rcpp work on solaris/suncc. Yes, it generally does. But

as we do not have access to such systems, some issues persist on

the CRAN test systems. And now that more time has passed since

the question was written, CRAN no longer tests on these platforms.

2.12. Does Rcpp work with REvolution R. We have not tested it

yet. Rcpp might need a few tweaks to work with the compilers

used by Revolution R (if those differ from the defaults). By now

REvolution R is defunct too.

2.13. Is it related to Rho (formerly CXXR). Rho, previously known

as CXXR, is an ambitious project that aims to totally refactor the R

interpreter in C++. There are a few similaritites with Rcpp but the

projects are unrelated.

Rho / CXXR and Rcpp both want R to make more use of C++

but they do it in very different ways. By now, Rho is long defunct

too.

2.14. How do I quickly prototype my code using Attributes. Rcpp

version 0.10.0 and later offer a new feature ‘Rcpp Attributes’ which

is described in detail in its own vignette (Allaire et al., 2023). In

short, it offers functions evalCpp, cppFunction and sourceCpp

which extend the functionality of the cxxfunction function.

4 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

2.15. What about the ‘no-linking’ feature. Starting with Rcpp

0.11.0, functionality provided by Rcpp and used by packages

built with Rcpp accessed via the registration facility offered by

R (and which is used by lme4 and Matrix, as well as by xts and

zoo). This requires no effort from the user / programmer, and

even frees us from explicit linking instruction. In most cases, the

files src/Makevars and src/Makevars.win can now be removed.

Exceptions are the use of RcppArmadillo (which needs an en-

try PKG_LIBS=$(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)) and

packages linking to external libraries they use.

But for most packages using Rcpp, only two things are required:

• an entry in DESCRIPTION such as Imports: Rcpp (which

may be versioned as in Imports: Rcpp (>= 0.11.0)), and

• an entry in NAMESPACE to ensure Rcpp is correctly instantiated,

for example importFrom(Rcpp, evalCpp).

The name of the symbol does not really matter; once one symbol

is imported all symbols should be available.

2.16. I am having problems building RcppArmadillo on macOS,

any help. Odds are your build failures are due to the absence of

gfortran and its associated libraries. The errors that you may

receive are related to either -lgfortran or -lquadmath.

To rectify the root of these errors, there are two options available.

The first option is to download and use a fixed set of gfortran

binaries that are used to compile R for macOS (e.g. given by the

maintainers of the macOS build). The second option is to either use

pre-existing gfortran binaries on your machine or download the

latest. These options are described in-depth in Section C.3 macOS

of the R Installation and Administration manual. Please consult this

manual for up-to-date information regarding gfortran binaries on

macOS. We have also documented other common macOS compile

issues in Section FAQ 2.10.

3. Examples

The following questions were asked on the Rcpp-devel mailing

list, which is our preferred place to ask questions as it guarantees

exposure to a number of advanced Rcpp users. The StackOverflow

tag for rcpp is an alternative; that site is also easily searchable.

Several dozen fully documented examples are provided at the

Rcpp Gallery – which is also open for new contributions.

3.1. Can I use templates with Rcpp.

I’m curious whether one can provide a class definition

inline in an R script and then initialize an instance of the

class and call a method on the class, all inline in R.

This question was initially about using templates with inline, and

we show that (older) answer first. It is also easy with Rcpp At-

tributes which is what we show below.

3.1.1. Using inline with Templated Code. Most certainly, consider this

simple example of a templated class which squares its argument:

inc <- 'template <typename T>

class square :

public std::function<T(T)> {

public:

T operator()(T t) const {

return t*t;

}

};

'

src <- '

double x = Rcpp::as<double>(xs);

int i = Rcpp::as<int>(is);

square<double> sqdbl;

square<int> sqint;

return Rcpp::DataFrame::create(

Rcpp::Named("x", sqdbl(x)),

Rcpp::Named("i", sqint(i)));

'

fun <- cxxfunction(signature(xs="numeric",

is="integer"),

body=src, include=inc,

plugin="Rcpp")

fun(2.2, 3L)

x i

1 4.84 9

3.1.2. Using Rcpp Attributes with Templated Code. We can also use ‘Rcpp

Attributes’ (Allaire et al., 2023)—as described in FAQ 2.2.2 and

FAQ 2.14 above. Simply place the following code into a file and

use sourceCpp on it. It will even run the R part at the end.

#include <Rcpp.h>

template <typename T> class square :

public std::function<T(T)> {

public:

T operator()(T t) const {

return t*t ;

}

};

// [[Rcpp::export]]

Rcpp::DataFrame fun(double x, int i) {

square<double> sqdbl;

square<int> sqint;

return Rcpp::DataFrame::create(

Rcpp::Named("x", sqdbl(x)),

Rcpp::Named("i", sqint(i)));

}

/*** R

fun(2.2, 3L)

*/

3.2. Can I do matrix algebra with Rcpp.

Rcpp allows element-wise operations on vector and ma-

trices through operator overloading and STL interface,

but what if I want to multiply a matrix by a vector, etc

. . .

Currently, Rcpp does not provide binary operators to allow oper-

ations involving entire objects. Adding operators to Rcpp would

be a major project (if done right) involving advanced techniques

such as expression templates. We currently do not plan to go in

this direction, but we would welcome external help. Please send

us a design document.

However, we have developed the RcppArmadillo package (Ed-

delbuettel et al., 2023b; Eddelbuettel and Sanderson, 2014) that

Eddelbuettel and François Rcpp FAQ Vignette | November 11, 2023 | 5

provides a bridge between Rcpp and Armadillo (Sanderson, 2010).

Armadillo supports binary operators on its types in a way that takes

full advantage of expression templates to remove temporaries and

allow chaining of operations. That is a mouthful of words mean-

ing that it makes the code go faster by using fiendishly clever

ways available via the so-called template meta programming, an

advanced C++ technique. Also, the RcppEigen package (Bates

and Eddelbuettel, 2013) provides an alternative using the Eigen

template library.

3.2.1. Using inline with RcppArmadillo. The following example is

adapted from the examples available at the project page of Ar-

madillo. It calculates x ′ × Y −1
× z

lines = '// copy the data to armadillo structures

arma::colvec x = Rcpp::as<arma::colvec> (x_);

arma::mat Y = Rcpp::as<arma::mat>(Y_) ;

arma::colvec z = Rcpp::as<arma::colvec>(z_) ;

// calculate the result

double result = arma::as_scalar(

arma::trans(x) * arma::inv(Y) * z);

// return it to R

return Rcpp::wrap(result);'

writeLines(a, file = "myfile.cpp")

If stored in a file myfile.cpp, we can use it via inline:

fx <- cxxfunction(signature(x_="numeric",

Y_="matrix",

z_="numeric"),

paste(readLines("myfile.cpp"),

collapse="\n"),

plugin="RcppArmadillo")

fx(1:4, diag(4), 1:4)

The focus is on the code arma::trans(x) * arma::inv(Y)

* z, which performs the same operation as the R code t(x) %*%

solve(Y) %*% z, although Armadillo turns it into only one oper-

ation, which makes it quite fast. Armadillo benchmarks against

other C++ matrix algebra libraries are provided on the Armadillo

website.

It should be noted that code below depends on the version

0.3.5 of inline and the version 0.2.2 of RcppArmadillo.

3.2.2. Using Rcpp Attributes with RcppArmadillo. We can also write the

same example for use with Rcpp Attributes:

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]

double fx(arma::colvec x, arma::mat Y,

arma::colvec z) {

// calculate the result

double result = arma::as_scalar(

arma::trans(x) * arma::inv(Y) * z

);

return result;

}

/*** R

fx(1:4, diag(4), 1:4)

*/

Here, the additional Rcpp::depends(RcppArmadillo) en-

sures that code can be compiled against the RcppArmadillo header,

and that the correct libraries are linked to the function built from

the supplied code example.

Note how we do not have to concern ourselves with conversion;

R object automatically become (Rcpp)Armadillo objects and we

can focus on the single computing a (scalar) result.

3.3. Can I use code from the Rmath header and library with Rcpp.

Can I call functions defined in the Rmath header file and

the standalone math library for R–as for example the

random number generators?

Yes, of course. This math library exports a subset of R, but Rcpp has

access to much more. Here is another simple example. Note how

we have to use and instance of the RNGScope class to set and re-set

the random-number generator. This also illustrates Rcpp sugar as

we are using a vectorised call to rnorm. Moreover, because the

RNG is reset, the two calls result in the same random draws. If we

wanted to control the draws, we could explicitly set the seed after

the RNGScope object has been instantiated.

fx <- cxxfunction(signature(),

'RNGScope();

return rnorm(5, 0, 100);',

plugin="Rcpp")

set.seed(42)

fx()

[1] 137.096 -56.470 36.313 63.286 40.427

fx()

[1] 137.096 -56.470 36.313 63.286 40.427

Newer versions of Rcpp also provide the actual Rmath function

in the R namespace, i.e. as R::rnorm(m,s) to obtain a scalar

random variable distributed as N(m, s).

Using Rcpp Attributes, this can be as simple as

cppFunction('Rcpp::NumericVector ff(int n) {

return rnorm(n, 0, 100); }')

set.seed(42)

ff(5)

[1] 137.096 -56.470 36.313 63.286 40.427

ff(5)

[1] -10.6125 151.1522 -9.4659 201.8424 -6.2714

set.seed(42)

rnorm(5, 0, 100)

[1] 137.096 -56.470 36.313 63.286 40.427

rnorm(5, 0, 100)

[1] -10.6125 151.1522 -9.4659 201.8424 -6.2714

This illustrates the Rcpp Attributes adds the required RNGScope

object for us. It also shows how setting the seed from R affects

draws done via C++ as well as R, and that identical random number

draws are obtained.

3.4. Can I use NA and Inf with Rcpp.

R knows about NA and Inf. How do I use them from

C++?

6 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

Yes, see the following example:

src <- 'Rcpp::NumericVector v(4);

v[0] = R_NegInf; // -Inf

v[1] = NA_REAL; // NA

v[2] = R_PosInf; // Inf

v[3] = 42; // c.f. Hitchhiker Guide

return Rcpp::wrap(v);'

fun <- cxxfunction(signature(), src, plugin="Rcpp")

fun()

[1] -Inf NA Inf 42

Similarly, for Rcpp Attributes:

#include <Rcpp.h>

// [[Rcpp::export]]

Rcpp::NumericVector fun(void) {

Rcpp::NumericVector v(4);

v[0] = R_NegInf; // -Inf

v[1] = NA_REAL; // NA

v[2] = R_PosInf; // Inf

v[3] = 42; // c.f. Hitchhiker Guide

return v;

}

3.5. Can I easily multiply matrices.

Can I multiply matrices easily?

Yes, via the RcppArmadillo package which builds upon Rcpp and

the wonderful Armadillo library described above in FAQ 3.2:

txt <- 'arma::mat Am = Rcpp::as< arma::mat >(A);

arma::mat Bm = Rcpp::as< arma::mat >(B);

return Rcpp::wrap(Am * Bm);'

mmult <- cxxfunction(signature(A="numeric",

B="numeric"),

body=txt,

plugin="RcppArmadillo")

A <- matrix(1:9, 3, 3)

B <- matrix(9:1, 3, 3)

C <- mmult(A, B)

C

Armadillo supports a full range of common linear algebra oper-

ations.

The RcppEigen package provides an alternative using the Eigen

template library.

Rcpp Attributes, once again, makes this even easier:

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]

arma::mat mult(arma::mat A, arma::mat B) {

return A*B;

}

/*** R

A <- matrix(1:9, 3, 3)

B <- matrix(9:1, 3, 3)

mult(A,B)

*/

which can be built, and run, from R via a simple sourceCpp

call—and will also run the small R example at the end.

3.6. How do I write a plugin for inline and/or Rcpp Attributes.

How can I create my own plugin for use by the inline

package?

Here is an example which shows how to it using GSL libraries as an

example. This is merely for demonstration, it is also not perfectly

general as we do not detect locations first—but it serves as an

example:

simple example of seeding RNG and

drawing one random number

gslrng <- '

int seed = Rcpp::as<int>(par) ;

gsl_rng_env_setup();

gsl_rng *r = gsl_rng_alloc (gsl_rng_default);

gsl_rng_set (r, (unsigned long) seed);

double v = gsl_rng_get (r);

gsl_rng_free(r);

return Rcpp::wrap(v);'

plug <- Rcpp::Rcpp.plugin.maker(

include.before = "#include <gsl/gsl_rng.h>",

libs = paste(

"-L/usr/local/lib/R/site-library/Rcpp/lib -lRcpp",

"-Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib",

"-L/usr/lib -lgsl -lgslcblas -lm")

)

registerPlugin("gslDemo", plug)

fun <- cxxfunction(signature(par="numeric"),

gslrng, plugin="gslDemo")

fun(0)

Here the Rcpp function Rcpp.plugin.maker is used to create

a plugin ‘plug’ which is then registered, and subsequently used by

inline.

The same plugins can be used by Rcpp Attributes as well.

3.7. How can I pass one additional flag to the compiler.

How can I pass another flag to the g++ compiler without

writing a new plugin?

The quickest way is to modify the return value from an existing

plugin. Here we use the default one from Rcpp itself in order to

pass the flag -std=c++11. As it does not set the PKG_CXXFLAGS

variable, we simply assign this. For other plugins, one may need

to append to the existing values instead. An older example follow

(but note that C++11 or newer is the default now with more recent

R releases)

myplugin <- getPlugin("Rcpp")

mypluginenvPKG_CXXFLAGS <- "-std=c++11"

f <- cxxfunction(signature(),

settings = myplugin, body = '

std::vector<double> x = { 1.0, 2.0, 3.0 };

return Rcpp::wrap(x);

Eddelbuettel and François Rcpp FAQ Vignette | November 11, 2023 | 7

')

f()

For Rcpp Attributes, the attributes Rcpp::plugin() can be

used. Currently supported plugins are for C++11 (which is now a

standard for compilation with R, but used to be an opt-in), other

compilation standards C++14, C++17, C++20, C++23, as well

as for OpenMP.

3.8. How can I set matrix row and column names.

Ok, I can create a matrix, but how do I set its row and

columns names?

Pretty much the same way as in R itself: We define a list with two

character vectors, one each for row and column names, and assign

this to the dimnames attribute:

src <- '

Rcpp::NumericMatrix x(2,2);

x.fill(42); // or another value

Rcpp::List dimnms = // list with 2 vecs

Rcpp::List::create(// with static names

Rcpp::CharacterVector::create("cc", "dd"),

Rcpp::CharacterVector::create("ee", "ff")

);

// and assign it

x.attr("dimnames") = dimnms;

return(x);

'

fun <- cxxfunction(signature(),

body=src, plugin="Rcpp")

fun()

The same logic, but used with Rcpp Attributes:

#include <Rcpp.h>

// [[Rcpp::export]]

Rcpp::List fun(void) {

Rcpp::NumericMatrix x(2,2);

x.fill(42); // or another value

Rcpp::List dimnms = // list with 2 vecs

Rcpp::List::create(// with static names

Rcpp::CharacterVector::create("cc", "dd"),

Rcpp::CharacterVector::create("ee", "ff"));

// and assign it

x.attr("dimnames") = dimnms;

return(x);

}

3.9. Why can long long types not be cast correctly. That is a good

and open question. We rely on the basic R types, notably integer

and numeric. These can be cast to and from C++ types without

problems. But there are corner cases. The following example,

contributed by a user, shows that we cannot reliably cast long

types (on a 64-bit machines).

BigInts <- cxxfunction(signature(),

'std::vector<long> bigints;

bigints.push_back(12345678901234567LL);

bigints.push_back(12345678901234568LL);

Rprintf("Difference of %ld\\n",

12345678901234568LL - 12345678901234567LL);

return wrap(bigints);',

plugin="Rcpp", includes="#include <vector>")

retval <- BigInts()

Unique 64-bit integers were cast to identical

lower precision numerics behind my back with

no warnings or errors whatsoever. Error.

stopifnot(length(unique(retval)) == 2)

While the difference of one is evident at the C++ level, it is no

longer present once cast to R. The 64-bit integer values get cast

to a floating point types with a 53-bit mantissa. We do not have

a good suggestion or fix for casting 64-bit integer values: 32-bit

integer values fit into integer types, up to 53 bit precision fits

into numeric and beyond that truly large integers may have to

converted (rather crudely) to text and re-parsed. Using a different

representation as for example from the GNU Multiple Precision

Arithmetic Library may be an alternative.

However, with care, and via the package bit64, R can use

integer64 as a type (but storing the 64 bits in a double), and

RcppInt64 (Eddelbuettel, 2023a) can help with conversion back

and forth.

3.10. What LaTeX packages do I need to typeset the vignettes.

I would like to typeset the vignettes. What do I need?

The TeXLive distribution seems to get bigger and bigger. What you

need to install may depend on your operating system.

Specific per-platform notes:

• Windows users probably want the MiKTeX. Suggestions for a

more detailed walk through would be appreciated.

• macOS users seem to fall into camps which like or do not

like brew / homebrew. One suggestion was to install MacTeX

but at approximately 2.5gb (as of January 2016) this is not

lightweight.

• Linux users probably want the full TeXLive set from their distri-

bution. On Debian these packages are installed to build the R

package itself: texlive-base, texlive-latex-base,

texlive-generic-recommended,

texlive-fonts-recommended,

texlive-fonts-extra, texlive-extra-utils,

texlive-latex-recommended,

texlive-latex-extra. Using texlive-full may be

a shortcut. Fedora and other distributions should have similar

packages.

3.11. Why is there a limit of 20 on some constructors.

Ok, I would like to pass N object but you only allow 20.

How come?

In essence, and in order to be able to compile it with the largest

number of compilers, Rcpp is constrained by the older C++ stan-

dards which do not support variadic function arguments. So we

actually use macros and code generator scripts to explicitly enu-

merate arguments, and that number has to stop at some limit. We

chose 20.

A good discussion is available at this StackOverflow question

concering data.frame creation with Rcpp. One solution offers a cus-

tom ListBuilder class to circumvent the limit; another suggests

to simply nest lists.

8 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

3.12. Can I use default function parameters with Rcpp. Yes, you can

use default parameters with some limitations. The limitations are

mainly related to string literals and empty vectors. This is what is

currently supported:

• String literals delimited by quotes (e.g. "foo")

• Integer and Decimal numeric values (e.g. 10 or 4.5)

• Pre-defined constants including:

– Booleans: true and false

– Null Values: R_NilValue, NA_STRING, NA_INTEGER,

NA_REAL, and NA_LOGICAL.

• Selected vector types can be instantiated using the empty form

of the ::create static member function.

– CharacterVector, IntegerVector, and

NumericVector

• Matrix types instantiated using the rows, cols constructor

Rcpp::<Type>Matrix n(rows,cols)

– CharacterMatrix, IntegerMatrix, and

NumericMatrix

To illustrate, please consider the following example that pro-

vides a short how-to:

#include <Rcpp.h>

// [[Rcpp::export]]

void sample_defaults(

NumericVector x =

NumericVector::create(), // Size 0 vector

bool bias = true, // Set to true

std::string method =

"rcpp rules!") { // Set string

Rcpp::Rcout << "x size: " << x.size() << ", ";

Rcpp::Rcout << "bias value: " << bias << ", ";

Rcpp::Rcout << "method value: " << ".";

}

/*** R

sample_defaults() # all defaults

sample_defaults(1:5) # supply x values

sample_defaults(bias = FALSE, # supply bool

method = "Rlang") # and string

*/

Note: In cpp, the default bool values are true and false

whereas in R the valid types are TRUE or FALSE.

3.13. Can I use C++11, C++14, C++17, . . . with Rcpp. But of course.

In a nutshell, this boils down to what your compiler supports, and

also what R supports. We expanded a little on this in Rcpp Gallery

article providing more detail. What follows in an abridged sum-

mary.

You can always locally set appropriate PKG_CXXFLAGS as an

environment variable, or via ~/.R/Makevars. You can also plugins

and/or R support from src/Makevars:

• C++11: has been supported since early 2013 via a plugin se-

lecting the language standard which is useful for sourceCpp()

etc. For packages, R has supported it since R 3.1.0 which

added the option to select the language standard via CXX_STD

= CXX11. As of early 2017, over 120 packages on CRAN use

this. As of R 4.0.0, this is the minimum standard and no longer

needed.

• C++14: has been supported since early 2016 via a plugin se-

lecting the language standard which is useful for sourceCpp()

etc. For packages, R supports it since R 3.4.0 adding the op-

tion to select the language standard via CXX_STD = CXX14.

It became the default with R 4.1.0.

• C++17: it has been supported (with an appropriate compiler)

via plugin starting with Rcpp 0.12.10, or use via sourceCpp(),

or via PKG_CXXFLAGS or other means to set compiler options.

It became the default with R 4.3.0, but compiler support may

not be widespread.

• C++20: It is also supported (given a suitable compiler) since

Rcpp 1.0.11.

3.14. How do I use it within (Python’s) Conda setup?. In a comment

to issue ticket #770 it is stated that running

conda install gxx_linux-64

helps within this environment as it installs the corresponding

x86_64-conda_cos6-linux-gnu-c++ compiler. Documentation

for this and other systems is provided at this page.

3.15. Can I speed up compilation?. Somewhat. One option

is to cache as much as possible via ccache by adding it to

~/.R/Makevars.

Depending on what parts of Rcpp are being used, compilation

speed can be increased by turning use of Modules off. Starting with

version 1.0.3, the RCPP_NO_MODULES define can be used. It can be

set in src/Makevars as an argument to PKG_CXXFLAGS (or one of

the other C++ dialect options) as -DRCPP_NO_MODULES. This has

the advantage of affecting all files in the package, including the

auto-generated RcppExports.cpp where it might be trickier to set

it manually.

Beyond modules, RTTI support can also be turned off. this

implies turning Modules support off as well so. To select this

approach, use the RCPP_NO_RTTI define.

Starting with version 1.0.8 of Rcpp, new headers Rcpp/Light,

Rcpp/Lighter, Rcpp/Lightest make this much easier as they

exclude these different (layered) bits of functionality.

4. Support

4.1. Is the API documented. You bet. We use doxygen to generate

html, latex and man page documentation from the source. The

html documentation is available for browsing, as a very large pdf

file, and all three formats are also available a zip-archives: html,

latex, and man.

4.2. Does it really work. We take quality seriously and have devel-

opped an extensive unit test suite to cover many possible uses of

the Rcpp API.

We are always on the look for more coverage in our testing.

Please let us know if something has not been tested enough.

Eddelbuettel and François Rcpp FAQ Vignette | November 11, 2023 | 9

4.3. Where can I ask further questions. The Rcpp-devel mailing

list hosted at R-forge is by far the best place. You may also want

to look at the list archives to see if your question has been asked

before.

You can also use StackOverflow via its ‘rcpp’ tag.

4.4. Where can I read old questions and answers. The normal Rcpp-

devel mailing list hosting at R-forge contains an archive, which can

be searched via swish.

Alternatively, one can also use Mail-Archive on Rcpp-devel

which offers web-based interfaces, including searching.

4.5. I like it. How can I help. We maintain a list of open issues in

the Github repository. We welcome pull requests and suggest that

code submissions come corresponding unit tests and, if applicable,

documentation.

If you are willing to donate time and have skills in C++, let us

know. If you are willing to donate money to sponsor improvements,

let us know too.

You can also spread the word about Rcpp. There are many

packages on CRAN that use C++, yet are not using Rcpp. You could

blog about it, or get the word out otherwise.

Last but not least the Rcpp Gallery is open for user contributions.

4.6. I don’t like it. How can I help. It is very generous of you to still

want to help. Perhaps you can tell us what it is that you dislike.

We are very open to constructive criticism.

4.7. Can I have commercial support for Rcpp. Sure you can. Just

send us an email, and we will be happy to discuss the request.

4.8. I want to learn quickly. Do you provide training courses. Yes.

Just send us an email.

4.9. Where is the code repository. From late 2008 to late 2013, we

used the Subversion repository at R-Forge which contained Rcpp

and a number of related packages. It still has the full history as

well as number of support files.

We have since switched to a Git repository at Github for Rcpp

(as well as for RcppArmadillo and RcppEigen).

5. Known Issues

Contained within this section is a list of known issues regarding

Rcpp. The issues listed here are either not able to be fixed due

to breaking application binary interface (ABI), would impact the

ability to reproduce pre-existing results, or require significant work.

Generally speaking, these issues come to light only when pushing

the edge capabilities of Rcpp.

5.1. Rcpp changed the (const) object I passed by value. Rcpp

objects are wrappers around the underlying R objects’ SEXP, or

S-expression. The SEXP is a pointer variable that holds the location

of where the R object data has been stored (R Core Team, 2023b,

Section 1.1). That is to say, the SEXP does not hold the actual data

of the R object but merely a reference to where the data resides.

When creating a new Rcpp object for an R object to enter C++, this

object will use the same SEXP that powers the original R object

if the types match otherwise a new SEXP must be created to be

type safe. In essence, the underlying SEXP objects are passed by

reference without explicit copies being made into C++. We refer to

this arrangement as a proxy model.

As for the actual implementation, there are a few conse-

quences of the proxy model. The foremost consequence within

this paradigm is that pass by value is really a pass by reference.

In essence, the distinction between the following two functions is

only visual sugar:

void implicit_ref(NumericVector X);

void explicit_ref(NumericVector& X);

In particular, when one is passing by value what occurs is the

instantiation of the new Rcpp object that uses the same SEXP for

the R object. As a result, the Rcpp object is “linked’ ’ to the original

R object. Thus, if an operation is performed on the Rcpp object,

such as adding 1 to each element, the operation also updates the

R object causing the change to be propagated to R’s interactive

environment.

#include <Rcpp.h>

// [[Rcpp::export]]

void implicit_ref(Rcpp::NumericVector X) {

X = X + 1.0;

}

// [[Rcpp::export]]

void explicit_ref(Rcpp::NumericVector& X) {

X = X + 1.0;

}

R use

a <- 1.5:4.5

b <- 1.5:4.5

implicit_ref(a)

a

[1] 2.5 3.5 4.5 5.5

explicit_ref(b)

b

[1] 2.5 3.5 4.5 5.5

There are two exceptions to this rule. The first exception is

that a deep copy of the object can be made by explicit use of

Rcpp:clone(). In this case, the cloned object has no link to the

original R object. However, there is a time cost associated with

this procedure as new memory must be allocated and the previous

values must be copied over. The second exception, which was

previously foreshadowed, is encountered when Rcpp and R object

types do not match. One frequent example of this case is when the

R object generated from seq() or a:b reports a class of "integer"

while the Rcpp object is setup to receive the class of "numeric"

as its object is set to NumericVector or NumericMatrix. In such

cases, this would lead to a new SEXP object being created behind the

scenes and, thus, there would not be a link between the Rcpp object

and R object. So, any changes in C++ would not be propagated to

R unless otherwise specified.

#include <Rcpp.h>

// [[Rcpp::export]]

void int_vec_type(Rcpp::IntegerVector X) {

X = X + 1.0;

}

10 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

// [[Rcpp::export]]

void num_vec_type(Rcpp::NumericVector X) {

X = X + 1.0;

}

R use:

a <- 1:5

b <- 1:5

class(a)

[1] "integer"

int_vec_type(a)

a # variable a changed as a side effect

[1] 2 3 4 5 6

num_vec_type(b)

b # b unchanged as copy was made for numeric

[1] 1 2 3 4 5

With this being said, there is one last area of contention with the

proxy model: the keyword const. The const declaration indicates

that an object is not allowed to be modified by any action. Due

to the way the proxy model paradigm works, there is a way to

“override” the const designation. Simply put, one can create a new

Rcpp object without the const declaration from a pre-existing

one. As a result, the new Rcpp object would be allowed to be

modified by the compiler and, thus, modifying the initial SEXP

object. Therefore, the initially secure R object would be altered.

To illustrate this phenomenon, consider the following scenario:

#include <Rcpp.h>

// [[Rcpp::export]]

Rcpp::IntegerVector const_override_ex(

const Rcpp::IntegerVector& X) {

Rcpp::IntegerVector Y(X); // Create object

// from SEXP

Y = Y * 2; // Modify new object

return Y; // Return new object

}

R use:

x <- 1:10 # an integer sequence

returning an altered value

const_override_ex(x)

[1] 2 4 6 8 10 12 14 16 18 20

but the original value is altered too!

x

[1] 2 4 6 8 10 12 14 16 18 20

So we see that with SEXP objects, the const declaration can be

circumvented as it is really a pointer to the underlying R object.

5.2. Issues with implicit conversion from an Rcpp object to a scalar

or other Rcpp object. Not all Rcpp expressions are directly compat-

ible with operator=. Compability issues stem from many Rcpp

objects and functions returning an intermediary result which re-

quires an explicit conversion. In such cases, the user may need to

assist the compiler with the conversion.

There are two ways to assist with the conversion. The first

is to construct storage variable for a result, calculate the result,

and then store a value into it. This is typically what is needed

when working with Character<Type> and String in Rcpp due to

the Rcpp::internal::string_proxy class. Within the following

code snippet, the aforementioned approach is emphasized:

#include <Rcpp.h>

// [[Rcpp::export]]

std::string explicit_string_conv(

Rcpp::CharacterVector X) {

std::string s; // define storage

s = X[0]; // assign from CharacterVector

return s;

}

If one were to use a direct allocation and assignment strategy,

e.g. std::string s = X[0], this would result in the compiler

triggering a conversion error on some platforms. The error would

be similar to:

error: no viable conversion from 'Proxy'

(aka 'string_proxy<16>') to 'std::string'

(aka 'basic_string<char, char_traits<char>,

allocator<char> >')

The second way to help the compiler is to use an explicit Rcpp

type conversion function, if one were to exist. Examples of Rcpp

type conversion functions include as<T>(), .get() for cumsum(),

is_true() and is_false() for any() or all().

5.3. Using operator= with a scalar replaced the object instead of

filling element-wise. Assignment using the operator= with either

Vector and Matrix classes will not elicit an element-wise fill.

If you seek an element-wise fill, then use the .fill() member

method to propagate a single value throughout the object. With

this being said, the behavior of operator= differs for the Vector

and Matrix classes.

The implementation of the operator= for the Vector class will

replace the existing vector with the assigned value. This behavior is

valid even if the assigned value is a scalar value such as 3.14 or 25 as

the object is cast into the appropriate Rcpp object type. Therefore,

if a Vector is initialized to have a length of 10 and a scalar is

assigned via operator=, then the resulting Vector would have a

length of 1. See the following code snippet for the aforementioned

behavior.

#include <Rcpp.h>

// [[Rcpp::export]]

void vec_scalar_assign(int n, double fill_val) {

Rcpp::NumericVector X(n);

Rcpp::Rcout << "Value of Vector " <<

"on Creation: " <<

std::endl << X << std::endl;

X = fill_val;

Rcpp::Rcout << "Value of Vector " <<

"after Assignment: " <<

Eddelbuettel and François Rcpp FAQ Vignette | November 11, 2023 | 11

std::endl << X << std::endl;

}

R use:

vec_scalar_assign(5L, 3.14)

Value of Vector on Creation:

0 0 0 0 0

Value of Vector after Assignment:

3.14

Now, the Matrix class does not define its own operator= but

instead uses the Vector class implementation. This leads to un-

expected results while attempting to use the assignment operator

with a scalar. In particular, the scalar will be coerced into a square

Matrix and then assigned. For an example of this behavior, con-

sider the following code:

#include <Rcpp.h>

// [[Rcpp::export]]

void mat_scalar_assign(int n, double fill_val) {

Rcpp::NumericMatrix X(n, n);

Rcpp::Rcout << "Value of Matrix " <<

"on Creation: " <<

std::endl << X << std::endl;

X = fill_val;

Rcpp::Rcout << "Value of Matrix " <<

"after Assignment: " <<

std::endl << X << std::endl;

}

R use:

mat_scalar_assign(2L, 3.0)

Value of Matrix on Creation:

0.00000 0.00000

0.00000 0.00000

#

Value of Matrix after Assignment:

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

5.4. Long Vector support on Windows. Prior to R’s 3.0.0, the largest

vector one could obtain was at most 231
− 1 elements. With the re-

lease of R’s 3.0.0, long vector support was added to allow for largest

vector possible to increase up to 252 elements on x64 bit operating

systems (c.f. Long Vectors help entry). Once this was established,

support for long vectors within the Rcpp paradigm was introduced

with Rcpp version 0.12.0 (c.f Rcpp 0.12.0 annoucement).

However, the requirement for using long vectors in Rcpp neces-

sitates the presence of compiler support for the R_xlen_t, which

is platform dependent on how ptrdiff_t is implemented. Unfor-

tunately, this means that on the Windows platform the definition of

R_xlen_t is of type long instead of long long when compiling

under the C++98 specification. Therefore, to solve this issue one

must compile under the specification for C++11 or later version.

There are three options to trigger compilation with C++11. The

first – and most likely option to use – will be the plugin support

offered by Rcpp attributes. This can be engaged by adding //

[[Rcpp::plugins(cpp11)]] to the top of the C++ script. For

diagnostic and illustrativative purposes, consider the following

code which checks to see if R_xlen_t is available on your platform:

#include <Rcpp.h>

// Force compilation mode to C++11

// [[Rcpp::plugins(cpp11)]]

// [[Rcpp::export]]

bool test_long_vector_support() {

#ifdef RCPP_HAS_LONG_LONG_TYPES

return true;

#else

return false;

#endif

}

R use:

test_long_vector_support()

[1] TRUE

The remaining two options are for users who have opted to

embed Rcpp code within an R package. In particular, the sec-

ond option requires adding CXX_STD = CXX11 to a Makevars file

found in the /src directory. Finally, the third option is to add

SystemRequirements:C++11 in the package’s DESCRIPTION file.

Please note that the support for C++11 prior to R v3.3.0 on

Windows is limited. Therefore, plan accordingly if the goal is to

support older versions of R.

5.5. Sorting with STL on a CharacterVector produces problem-

atic results. The Standard Template Library’s (STL) std::sort

algorithm performs adequately for the majority of Rcpp data

types. The notable exception that makes what would oth-

erwise be a universal quantifier into an existential quantifier

is the CharacterVector data type. Chiefly, the issue with

sorting strings is related to how the CharacterVector relies

upon the use of Rcpp::internal::string_proxy. In particular,

Rcpp::internal::string_proxy is not MoveAssignable since

the left hand side of operator=(const string_proxy \&rhs) is

not viewed as equivalent to the right hand side before the operation

(ISO/IEC, 2011, p. 466, Table 22). This further complicates mat-

ters when using CharacterVector with std::swap, std::move,

std::copy and their variants.

To avoid unwarranted pain with sorting, the preferred approach

is to use the .sort() member function of Rcpp objects. The

member function correctly applies the sorting procedure to Rcpp

objects regardless of type. Though, sorting is slightly problematic

due to locale as explained in the next entry. In the interim, the

following code example illustrates the preferred approach alongside

the problematic STL approach:

#include <Rcpp.h>

// [[Rcpp::export]]

Rcpp::CharacterVector preferred_sort(

Rcpp::CharacterVector x) {

Rcpp::CharacterVector y = Rcpp::clone(x);

y.sort();

return y;

12 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

}

// [[Rcpp::export]]

Rcpp::CharacterVector stl_sort(

Rcpp::CharacterVector x) {

Rcpp::CharacterVector y = Rcpp::clone(x);

std::sort(y.begin(), y.end());

return y;

}

R use:

set.seed(123)

(X <- sample(c(LETTERS[1:5], letters[1:6]), 11))

[1] "C" "f" "B" "a" "e" "E" "D" "d" "c" "A" "b"

preferred_sort(X)

[1] "A" "B" "C" "D" "E" "a" "b" "c" "d" "e" "f"

stl_sort(X)

[1] "f" "f" "f" "f" "f" "f" "f" "f" "f" "C" "f"

In closing, the results of using the STL approach do change

depending on whether libc++ or libstdc++ standard library is

used to compile the code. When debugging, this does make the

issue particularly complex to sort out. Principally, compilation

with libc++ and STL has been shown to yield the correct results.

However, it is not wise to rely upon this library as a majority of

code is compiled against libstdc++ as it more complete.

5.6. Lexicographic order of string sorting differs due to capitaliza-

tion. Comparing strings within R hinges on the ability to process

the locale or native-language environment of the string. In R, there

is a function called Scollate that performs the comparison on

locale. Unfortunately, this function has not been made publicly

available and, thus, Rcpp does not have access to it within its imple-

mentation of StrCmp. As a result, strings that are sorted under the

.sort() member function are ordered improperly. Specifically, if

capitalization is present, then capitalized words are sorted together

followed by the sorting of lowercase words instead of a mixture

of capitalized and lowercase words. The issue is illustrated by the

following code example:

#include <Rcpp.h>

// [[Rcpp::export]]

Rcpp::CharacterVector rcpp_sort(

Rcpp::CharacterVector X) {

X.sort();

return X;

}

R use:

x <- c("B", "b", "c", "A", "a")

sort(x)

[1] "a" "A" "b" "B" "c"

rcpp_sort(x)

[1] "A" "B" "a" "b" "c"

5.7. Package building fails with ‘symbols not found’. R 3.4.0 and

later strongly encourage registering dynamically loadable symbols.

In the stronger form (where .registration=TRUE is added to the

useDynLib() statement in NAMESPACE), only registered symbols

can be loaded. This is fully supported by Rcpp 0.12.12 and later,

and the required code is added to src/RcppExports.cpp.

However, the transition from the previously gener-

ated file src/RcppExports.cpp to the new one may

require running compileAttributes() twice (which

does not happen when, e.g., devtools is used). When

Rcpp::compileAttributes() is called, it also calls

tools::package_native_routine_registration_skeleton(),

which crawls through usages of .Call() in the R/ source files of

the package to figure out what routines need to be registered. If

an older RcppExports.R file is discovered, its out-of-date symbol

names get picked up, and registration rules for those symbols get

written as well. This will register more symbols for the package

than are actually defined, leading to an error. This point has

been discussed at some length both in the GitHub issue tickes, on

StackOverflow and elsewhere.

So if your autogenerated file fails, and a symbols not

found error is reported by the linker, consider running

compileAttributes() twice. Deleting R/RcppExports.R and

src/RcppExports.cpp may also work.

5.8. Can we use exceptions and stop() across shared libraries?.

Within limits, yes. Code that is generated via Rcpp Attributes (see

Allaire et al. (2023) and Section~2.2.2) generally handles this cor-

rectly and gracefully via the try-catch layer it adds shielding the

exception from propagating to another, separate dynamic library.

However, this mechanism relies on dynamic linking with the

(system library) libgcc providing the C++ standard library (as

well as on using the same C++ standard library across all compiled

components). But this library is linked statically on Windows

putting a limitation on the use of stop() from within Rcpp Modules

(Eddelbuettel and François, 2023). Some more background on the

linking requirement is in this SO question.

5.9. My package errors with “ ‘dataptr’ not provided by Rcpp”. If

you see tests of your package fail with an error ‘. . . not provided by

Rcpp’, frequently pointing at either dataptr or enterRNGScope,

then the Rcpp package may not have been initialized correctly. For

your package, it is generally recommended to have both Imports:

Rcpp and LinkingTo: Rcpp in the file DESCRIPTION combined

with an explicit importFrom("Rcpp", "evalCpp") in the file

NAMESPACE. Doing so ensures that this symbol is registered when

your package is loaded by R, and as a side-effect certain other Rcpp

function identifiers will also be resolved properly.

5.10. On macOS, ‘no matching function for call to R_lsInternal’.

In issue #1148 an error due to overeager includes was re-

ported. Including Rinternals.h along with the (macOS-only)

mach/boolean.h lead to linker error as mach/boolean redefines

TRUE leading to bad interactions with the Rboolean enum type. A

very simple solution is to be more careful and conservative with

#include files and a) have #include <mach/boolean.h> appear

first and b) skip the #include <Rinternals.h> as it is included

by Rcpp.h anyway.

5.11. Can we grow Rcpp vectors like STL vectors via ’push*’.

No. Use actual STL vectors instead. This has been stated clearly

many times going back to the original announcement in Feb 2010,

StackOverflow answers in Dec 2011 and in Dec 2012, the rcpp-

devel list in Jun 2013, another StackOverflow answer in Nov 2013,

an early Rcpp Gallery post in Dec 2013, again on StackOverflow

Eddelbuettel and François Rcpp FAQ Vignette | November 11, 2023 | 13

Dec 2014, as well as in the ‘Advanced R’ first and second editions.

For emphasis, here is a quote from the rcpp-devel post:

Those are somehow cosmetic additions. The usual sug-

gestion is not to use push_front and push_back on Rcpp

types.

We use R’s memory, and in R, resizing a vector means

moving the data. So if you push_back 3 times, you’re

moving the data 3 times.

Using R own memory is the best ever decision we made

in Rcpp. You can always use your own data structures

to accumulate data, perhaps using stl types and then

convert back to R types, which is something we make

easy to do.

Many code examples and packages show exactly that approach

(as e.g. discussed in the Rcpp Gallery post). Anybody who claims

otherwise is (possibly intentionally) misleading.

5.12. Converting a large number of Date objects seems slow. The

Date and Datetime classes, and their vector variants, go back a

very long time to the very beginning of Rcpp and use in RQuantLib

(Eddelbuettel et al., 2021) interfacing QuantLib (QuantLib Core

Team, 2021). Their intent was, essentially, to hold (single) start

and end values delineating an interval. The design is far from

optimal, but the interface is now established. We have rewritten

them once, and do not plan to rewrite them in the near future.

Those looking to parse and convert many dates at once could look

at anytime (Eddelbuettel, 2020) where we use the Boost parser, or

similar approaches using the C++ headers-only libraries in pack-

ages RcppCCTZ (Eddelbuettel, 2022) and RcppDate (Eddelbuettel,

2021). We are not likely to carry this over to the Rcpp package as

there are advantages in remaining dependency-free.

References

Allaire JJ, Eddelbuettel D, François R (2023). Rcpp Attributes. Vignette included

in R package Rcpp, URL https://CRAN.R-Project.org/package=Rcpp.

Bates D, Eddelbuettel D (2013). “Fast and Elegant Numerical Linear Algebra Us-

ing the RcppEigen Package.” Journal of Statistical Software, 52(5), 1–24. doi:

10.18637/jss.v052.i05. URL https://doi.org/10.18637/jss.v052.i05.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!

Springer, New York. ISBN 978-1-4614-6867-7.

Eddelbuettel D (2020). anytime: Anything to ’POSIXct’ or ’Date’ Converter. R

package version 0.3.9, URL https://CRAN.R-Project.org/package=anytime.

Eddelbuettel D (2021). RcppDate: ’date’ C++ Header Libary for Date and Time

Functionality. R package version 0.0.3, URL https://CRAN.R-Project.org/

package=RcppDate.

Eddelbuettel D (2022). RcppCCTZ: Rcpp Bindings for the CCTZ Library. R pack-

age version 0.2.12, URL https://CRAN.R-Project.org/package=RcppCCTZ.

Eddelbuettel D (2023a). RppInt64: Rcpp-Based Helper Functions to Pass Int64

and nanotime Values Between R and C++. R package version 0.0.3, URL

https://CRAN.R-Project.org/package=RcppInt64.

Eddelbuettel D (2023b). Thirteen Simple Steps for Creating An R Package

with an External C++ Library. Vignette included in R package Rcpp, URL

https://CRAN.R-Project.org/package=Rcpp.

Eddelbuettel D, Balamuta JJ (2017). “Extending R with C++: A Brief Introduction

to Rcpp.” PeerJ Preprints, 5. doi:10.7287/peerj.preprints.3188v1/.

URL https://doi.org/10.7287/peerj.preprints.3188v1/.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief

Introduction to Rcpp.” The American Statistician, 72(1). doi:

10.1080/00031305.2017.1375990. URL https://doi.org/10.1080/

00031305.2017.1375990.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, François R (2023). Exposing C++ functions and classes with

Rcpp modules. Vignette included in R package Rcpp, URL https://CRAN.

R-Project.org/package=Rcpp.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2023a). Rcpp: Seamless R and C++ Integration. R package version

1.0.11, URL https://CRAN.R-Project.org/package=Rcpp.

Eddelbuettel D, François R, Bates D, Ni B, Sanderson C (2023b). RcppArmadillo:

Rcpp integration for Armadillo templated linear algebra library. R package

version 0.12.4.1.0, URL https://CRAN.R-Project.org/package=RcppArmadillo.

Eddelbuettel D, Horner J (2023). littler: R at the Command-Line via r. R package

version 0.3.18, URL https://CRAN.R-Project.org/package=littler.

Eddelbuettel D, Nguyen K, Leitch T (2021). RQuantLib: R interface to the

QuantLib library. R package version 0.4.14, URL https://CRAN.R-Project.org/

package=RQuantLib.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with

High-Performance C++ Linear Algebra.” Computational Statistics and Data

Analysis, 71, 1054–1063. doi:10.1016/j.csda.2013.02.005. URL

https://dx.doi.org/10.1016/j.csda.2013.02.005.

ISO/IEC (2011). “C++ 2011 Standard Document 14882:2011.” ISO/IEC

Standard Group for Information Technology / Programming Languages /

C++. URL https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=50372.

QuantLib Core Team (2021). QuantLib: a free/open-source library for quantitative

finance. URL https://quantlib.org.

R Core Team (2023a). R Installation and Administration. R Foundation for

Statistical Computing, Vienna, Austria. URL https://CRAN.R-Project.org/doc/

manuals/R-admin.html.

R Core Team (2023b). R internals. R Foundation for Statistical Computing,

Vienna, Austria. URL https://CRAN.R-Project.org/doc/manuals/R-ints.html.

R Core Team (2023c). Writing R extensions. R Foundation for Statistical

Computing, Vienna, Austria. URL https://CRAN.R-Project.org/doc/manuals/

R-exts.html.

Sanderson C (2010). “Armadillo: An open source C++ Algebra Library for Fast

Prototyping and Computationally Intensive Experiments.” Technical report,

NICTA. URL https://arma.sf.net.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, François R, Soetaert K, Ranke J

(2021). inline: Inline C, C++, Fortran function calls from R. R package version

0.3.19, URL https://CRAN.R-Project.org/package=inline.

14 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

