
Rcpp Attributes
J.J. Allairea, Dirk Eddelbuettelb, and Romain Françoisc

ahttps://rstudio.com; bhttp://dirk.eddelbuettel.com; chttps://romain.rbind.io/

This version was compiled on July 3, 2023

Rcpp attributes provide a high-level syntax for declaring C++ functions as

callable from R and automatically generating the code required to invoke

them. Attributes are intended to facilitate both interactive use of C++ within

R sessions as well as to support R package development. The implementa-

tion of attributes is based on previous work in the inline package (Sklyar

et al., 2021).

Rcpp | attributes | R | C++

Attributes are a new feature of Rcpp version 0.10.0 (Eddel-

buettel et al., 2023; Eddelbuettel and François, 2011) that provide

infrastructure for seamless language bindings between R and C++.

The motivation for attributes is several-fold:

1. Reduce the learning curve associated with using C++ and R

together

2. Eliminate boilerplate conversion and marshaling code wher-

ever possible

3. Seamless use of C++ within interactive R sessions

4. Unified syntax for interactive work and package development

The core concept is to add annotations to C++ source files that

provide the context required to automatically generate R bindings

to C++ functions. Attributes and their supporting functions include:

• Rcpp::export attribute to export a C++ function to R

• sourceCpp function to source exported functions from a file

• cppFunction and evalCpp functions for inline declarations

and execution

• Rcpp::depends attribute for specifying additional build de-

pendencies for sourceCpp

Attributes can also be used for package development via the

compileAttributes function, which automatically generates

extern "C" and .Call wrappers for C++ functions within pack-

ages.

1. Using Attributes

Attributes are annotations that are added to C++ source files to

provide additional information to the compiler. Rcpp supports

attributes to indicate that C++ functions should be made available

as R functions, as well as to optionally specify additional build

dependencies for source files.

C++11 specifies a standard syntax for attributes (Maurer and

Wong, 2008). Since this standard isn’t yet fully supported across

all compilers, Rcpp attributes are included in source files using

specially formatted comments.

1.1. Exporting C++ Functions. The sourceCpp function parses a

C++ file and looks for functions marked with the Rcpp::export

attribute. A shared library is then built and its exported functions

are made available as R functions in the specified environment.

For example, this source file contains an implementation of con-

volve (note the Rcpp::export attribute in the comment above the

function):

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

NumericVector convolveCpp(NumericVector a,

NumericVector b) {

int na = a.size(), nb = b.size();

int nab = na + nb - 1;

NumericVector xab(nab);

for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)

xab[i + j] += a[i] * b[j];

return xab;

}

The addition of the export attribute allows us to do this from

the R prompt:

sourceCpp("convolve.cpp")

convolveCpp(x, y)

We can now write C++ functions using built-in C++ types and

Rcpp wrapper types and then source them just as we would an R

script.

The sourceCpp function performs caching based on the last

modified date of the source file and it’s local dependencies so as

long as the source does not change the compilation will occur only

once per R session.

1.2. Specifying Argument Defaults. If default argument values are

provided in the C++ function definition then these defaults are

also used for the exported R function. For example, the following

C++ function:

DataFrame readData(CharacterVector file,

CharacterVector colNames =

CharacterVector::create(),

std::string comment = "#",

bool header = true)

Will be exported to R as:

function(file, colNames=character(),

comment="#", header=TRUE)

Note that C++ rules for default arguments still apply: they

must occur consecutively at the end of the function signature and

(unlike R) can’t rely on the values of other arguments.

Not all C++ default argument values can be parsed into their

R equivalents, however the most common cases are supported,

including:

• String literals delimited by quotes (e.g. "foo")

https://cran.r-project.org/package=Rcpp Rcpp Vignette | July 3, 2023 | 1–6

• Decimal numeric values (e.g. 10 or 4.5)

• Pre-defined constants including true, false, R_NilValue,

NA_STRING, NA_INTEGER, NA_REAL, and NA_LOGICAL.

• Selected vector types (CharacterVector, IntegerVector,

and NumericVector) instantiated using the ::create static

member function.

• Matrix types instantiated using the rows, cols constructor.

1.3. Signaling Errors. Within R code the stop function is typi-

cally used to signal errors. Within R extensions written in C the

Rf_error function is typically used. However, within C++ code

you cannot safely use Rf_error because it results in a longjmp

over any C++ destructors on the stack.

The correct way to signal errors within C++ functions is to throw

an Rcpp::exception. For example:

if (unexpectedCondition)

throw Rcpp::exception("Unexpected "

"condition occurred");

There is also an Rcpp::stop function that is shorthand for

throwing an Rcpp::exception. For example:

if (unexpectedCondition)

Rcpp::stop("Unexpected condition occurred");

In both cases the C++ exception will be caught by Rcpp prior to

returning control to R and converted into the correct signal to R

that execution should stop with the specified message.

You can similarly also signal warnings with the Rcpp::warning

function:

if (unexpectedCondition)

Rcpp::warning("Unexpected condition occurred");

1.4. Supporting User Interruption. If your function may run for

an extended period of time, users will appreciate the ability to

interrupt it’s processing and return to the REPL. This is handled

automatically for R code (as R checks for user interrupts periodically

during processing) however requires explicit accounting for in C

and C++ extensions to R. To make computations interrupt-able, you

should periodically call the Rcpp::checkUserInterrupt function,

for example:

for (int i=0; i<1000000; i++) {

// check for interrupt every 1000 iterations

if (i % 1000 == 0)

Rcpp::checkUserInterrupt();

// ...do some expensive work...

}

A good guideline is to call Rcpp::checkUserInterrupt every

1 or 2 seconds that your computation is running. In the above code,

if the user requests an interrupt then an exception is thrown and

the attributes wrapper code arranges for the user to be returned to

the REPL.

Note that R provides a C API for the same purpose

(R_CheckUserInterrupt) however this API is not safe to use in

C++ code as it uses longjmp to exit the current scope, bypassing any

C++ destructors on the stack. The Rcpp::checkUserInterrupt

function is provided as a safe alternative for C++ code.

1.5. Embedding R Code. Typically C++ and R code are kept in

their own source files. However, it’s often convenient to bundle

code from both languages into a common source file that can be

executed using single call to sourceCpp.

To embed chunks of R code within a C++ source file you include

the R code within a block comment that has the prefix of /*** R.

For example:

/*** R

Call the fibonacci function defined in C++

fibonacci(10)

*/

Multiple R code chunks can be included in a C++ file. The

sourceCpp function will first compile the C++ code into a shared

library and then source the embedded R code.

1.6. Modifying Function Names. You can change the name of an

exported function as it appears to R by adding a name parameter

to Rcpp::export. For example:

// [[Rcpp::export(name = ".convolveCpp")]]

NumericVector convolveCpp(NumericVector a,

NumericVector b)

Note that in this case since the specified name is prefaced by

a . the exported R function will be hidden. You can also use this

method to provide implementations of S3 methods (which wouldn’t

otherwise be possible because C++ functions can’t contain a ‘.’ in

their name).

1.7. Returning invisible object. Typically, only void-returning func-

tions are wrapped by invisible() in RcppExports.R. In some

cases, however, it is preferred to return an object invisibly. This

can be done by adding an invisible parameter to Rcpp::export.

For example:

// [[Rcpp::export(invisible = true)]]

NumericVector convolveCpp(NumericVector a,

NumericVector b)

Then the R wrapper of convolveCpp will return

invisible(.Call(...)) rather than .Call(...).

1.8. Function Requirements. Functions marked with the

Rcpp::export attribute must meet several requirements to be

correctly handled:

• Be defined in the global namespace (i.e. not within a C++

namespace declaration)

• Have a return type that is either void or compatible with

Rcpp::wrap and parameter types that are compatible with

Rcpp::as (see sections 3.1 and 3.2 of the ‘Rcpp-jss-2011’

vignette for more details).

• Use fully qualified type names for the return value and all pa-

rameters. Rcpp types may however appear without a names-

pace qualifier (i.e. DataFrame is okay as a type name but

std::string must be specified fully).

2 | https://cran.r-project.org/package=Rcpp Allaire, Eddelbuettel, François

1.9. Random Number Generation. R functions implemented in C or

C++ need to be careful to surround use of internal random number

generation routines (e.g. unif_rand) with calls to GetRNGstate

and PutRNGstate.

Within Rcpp, this is typically done using the RNGScope class.

However, this is not necessary for C++ functions exported using

attributes because an RNGScope is established for them automat-

ically. Note that Rcpp implements RNGScope using a counter, so

it’s still safe to execute code that may establish it’s own RNGScope

(such as the Rcpp sugar functions that deal with random number

generation).

The overhead associated with using RNGScope is negligible

(only a couple of milliseconds) and it provides a guarantee that

all C++ code will inter-operate correctly with R’s random number

generation. If you are certain that no C++ code will make use

of random number generation and the 2ms of execution time is

meaningful in your context, you can disable the automatic injec-

tion of RNGScope using the rng parameter of the Rcpp::export

attribute. For example:

// [[Rcpp::export(rng = false)]]

double myFunction(double input) {

// ...code that never uses the

// R random number generation...

}

1.10. Importing Dependencies. It’s also possible to use the

Rcpp::depends attribute to declare dependencies on other pack-

ages. For example:

// [[Rcpp::depends(RcppArmadillo)]]

#include <RcppArmadillo.h>

using namespace Rcpp;

// [[Rcpp::export]]

List fastLm(NumericVector yr, NumericMatrix Xr) {

int n = Xr.nrow(), k = Xr.ncol();

arma::mat X(Xr.begin(), n, k, false);

arma::colvec y(yr.begin(), yr.size(), false);

arma::colvec coef = arma::solve(X, y);

arma::colvec rd = y - X*coef;

double sig2 =

arma::as_scalar(arma::trans(rd)*rd/(n-k));

arma::colvec sderr = arma::sqrt(sig2 *

arma::diagvec(arma::inv(arma::trans(X)*X)));

return List::create(Named("coef") = coef,

Named("sderr")= sderr);

}

The inclusion of the Rcpp::depends attribute causes

sourceCpp to configure the build environment to correctly com-

pile and link against the RcppArmadillo package. Source files

can declare more than one dependency either by using multiple

Rcpp::depends attributes or with syntax like this:

// [[Rcpp::depends(Matrix, RcppArmadillo)]]

Dependencies are discovered both by scanning for package in-

clude directories and by invoking inline plugins if they are available

for a package.

Note that while the Rcpp::depends attribute establishes depen-

dencies for sourceCpp, it’s important to note that if you include

the same source file in an R package these dependencies must still

be listed in the Imports and/or LinkingTo fields of the package

DESCRIPTION file.

1.11. Sharing Code. The core use case for sourceCpp is the com-

pilation of a single self-contained source file. Code within this file

can import other C++ code by using the Rcpp::depends attribute

as described above.

The recommended practice for sharing C++ code across many

uses of sourceCpp is therefore to create an R package to wrap the

C++ code. This has many benefits not the least of which is easy

distribution of shared code. More information on creating packages

that contain C++ code is included in the Package Development

section below.

1.11.1. Shared Code in Header Files. If you need to share a small

amount of C++ code between source files compiled with

sourceCpp and the option of creating a package isn’t practical,

then you can also share code using local includes of C++ header

files. To do this, create a header file with the definition of shared

functions, classes, enums, etc. For example:

#ifndef __UTILITIES__

#define __UTILITIES__

inline double timesTwo(double x) {

return x * 2;

}

#endif // __UTILITIES__

Note the use of the #ifndef include guard, this is important to

ensure that code is not included more than once in a source file.

You should use an include guard and be sure to pick a unique name

for the corresponding #define.

Also note the use of the inline keyword preceding the function.

This is important to ensure that there are not multiple definitions

of functions included from header files. Classes fully defined in

header files automatically have inline semantics so don’t require

this treatment.

To use this code in a source file you’d just include it based on

it’s relative path (being sure to use " as the delimiter to indicate a

local file reference). For example:

#include "shared/utilities.hpp"

// [[Rcpp::export]]

double transformValue(double x) {

return timesTwo(x) * 10;

}

1.11.2. Shared Code in C++ Files. When scanning for locally included

header files sourceCpp also checks for a corresponding implemen-

tation file and automatically includes it in the compilation if it

exists.

Allaire, Eddelbuettel, François Rcpp Vignette | July 3, 2023 | 3

This enables you to break the shared code entirely into it’s own

source file. In terms of the above example, this would mean having

only a function declaration in the header:

#ifndef __UTILITIES__

#define __UTILITIES__

double timesTwo(double x);

#endif // __UTILITIES__

Then actually defining the function in a separate source file with

the same base name as the header file but with a .cpp extension

(in the above example this would be utilities.cpp):

#include "utilities.hpp"

double timesTwo(double x) {

return x * 2;

}

It’s also possible to use attributes to declare dependencies and

exported functions within shared header and source files. This

enables you to take a source file that is typically used standalone

and include it when compiling another source file.

Note that since additional source files are processed as separate

translation units the total compilation time will increase propor-

tional to the number of files processed. From this standpoint it’s

often preferable to use shared header files with definitions fully

inlined as demonstrated above.

Note also that embedded R code is only executed for the main

source file not those referenced by local includes.

1.12. Including C++ Inline. Maintaining C++ code in it’s own source

file provides several benefits including the ability to use C++ aware

text-editing tools and straightforward mapping of compilation er-

rors to lines in the source file. However, it’s also possible to do

inline declaration and execution of C++ code.

There are several ways to accomplish this, including passing a

code string to sourceCpp or using the shorter-form cppFunction

or evalCpp functions. For example:

cppFunction('

int fibonacci(const int x) {

if (x < 2)

return x;

else

return (fibonacci(x-1)) + fibonacci(x-2);

}

')

evalCpp('std::numeric_limits<double>::max()')

You can also specify a depends parameter to cppFunction or

evalCpp:

cppFunction(depends='RcppArmadillo', code='...')

2. Package Development

One of the goals of Rcpp attributes is to simultaneously facilitate

ad-hoc and interactive work with C++ while also making it very

easy to migrate that work into an R package. There are several

benefits of moving code from a standalone C++ source file to a

package:

1. Your code can be made available to users without C++ devel-

opment tools (at least on Windows or Mac OS X where binary

packages are common)

2. Multiple source files and their dependencies are handled au-

tomatically by the R package build system

3. Packages provide additional infrastructure for testing, docu-

mentation and consistency

2.1. Package Creation. To create a package that is based on Rcpp

you should follow the guidelines in the ‘Rcpp-package’ vignette.

For a new package this is most conveniently done using the

Rcpp.package.skeleton function.

To generate a new package with a simple hello, world function

that uses attributes you can do the following:

Rcpp.package.skeleton("NewPackage",

attributes = TRUE)

To generate a package based on C++ files that you’ve been using

with sourceCpp you can use the cpp_files parameter:

Rcpp.package.skeleton("NewPackage",

example_code = FALSE,

cpp_files = c("convolve.cpp"))

2.2. Specifying Dependencies. Once you’ve migrated C++ code

into a package, the dependencies for source files are derived from

the Imports and LinkingTo fields in the package DESCRIPTION

file rather than the Rcpp::depends attribute. Some packages also

require the addition of an entry to the package NAMESPACE file to

ensure that the package’s shared library is loaded prior to callers

using the package. For every package you import C++ code from

(including Rcpp) you need to add these entries.

Packages that provide only C++ header files (and no shared

library) need only be referred to using LinkingTo. You should

consult the documentation for the package you are using for the

requirements particular to that package.

For example, if your package depends on Rcpp you’d have the

following entries in the DESCRIPTION file:

Imports: Rcpp (>= 0.11.4)

LinkingTo: Rcpp

And the following entry in your NAMESPACE file:

importFrom(Rcpp, evalCpp)

If your package additionally depended on the BH (Boost head-

ers) package you’d just add an entry for BH to the LinkingTo field

since BH is a header-only package:

Imports: Rcpp (>= 0.11.4)

LinkingTo: Rcpp, BH

2.3. Exporting R Functions. Within interactive sessions you call the

sourceCpp function on individual files to export C++ functions into

the global environment. However, for packages you call a single

utility function to export all C++ functions within the package.

4 | https://cran.r-project.org/package=Rcpp Allaire, Eddelbuettel, François

The compileAttributes function scans the source files within

a package for export attributes and generates code as required. For

example, executing this from within the package working directory:

compileAttributes()

Results in the generation of the following two source files:

• src/RcppExports.cpp – The extern "C" wrappers re-

quired to call exported C++ functions within the package.

• R/RcppExports.R – The .Call wrappers required to call the

extern "C" functions defined in RcppExports.cpp.

You should re-run compileAttributes whenever functions are

added, removed, or have their signatures changed. Note that if you

are using either RStudio or devtools to build your package then

the compileAttributes function is called automatically whenever

your package is built.

The compileAttributes function deals only with exporting

C++ functions to R. If you want the functions to additionally be

publicly available from your package’s namespace another step may

be required. Specifically, if your package NAMESPACE file does not

use a pattern to export functions then you should add an explicit

entry to NAMESPACE for each R function you want publicly available.

2.4. Package Init Functions. Rcpp attribute compilation will au-

tomatically generate a package R_init function that does native

routine registration as described here: https://cran.r-project.org/doc/

manuals/r-release/R-exts.html#Registering-native-routines.

You may however want to add additional C++ code to the

package initialization sequence. To do this, you can add the

[[Rcpp::init]] attribute to functions within your package. For

example:

// [[Rcpp::init]]

void my_package_init(DllInfo *dll) {

// initialization code here

}

In this case, a call to my_package_init() will be added to the

end of the automatically generated R_init function within RcppEx-

ports.cpp. For example:

void my_package_init(DllInfo *dll);

RcppExport void R_init_pkgname(DllInfo *dll) {

R_registerRoutines(dll, NULL, CallEntries,

NULL, NULL);

R_useDynamicSymbols(dll, FALSE);

my_package_init(dll);

}

2.5. Types in Generated Code. In some cases the signatures of the

C++ functions that are generated within RcppExports.cpp may

have additional type requirements beyond the core standard library

and Rcpp types (e.g. CharacterVector, NumericVector, etc.).

Examples might include convenience typedefs, as/wrap handlers

for marshaling between custom types and SEXP, or types wrapped

by the Rcpp XPtr template.

In this case, you can create a header file that contains these type

definitions (either defined inline or by including other headers) and

have this header file automatically included in RcppExports.cpp.

Headers named with the convention pkgname_types are automat-

ically included along with the generated C++ code. For example, if

your package is named fastcode then any of the following header

files would be automatically included in RcppExports.cpp:

src/fastcode_types.h

src/fastcode_types.hpp

inst/include/fastcode_types.h

inst/include/fastcode_types.hpp

There is one other mechanism for type visibility in

RcppExports.cpp. If your package provides a master include

file for consumption by C++ clients then this file will also be au-

tomatically included. For example, if the fastcode package had a

C++ API and the following header file:

inst/include/fastcode.h

This header file will also automatically be included in

RcppExports.cpp. Note that the convention of using .h for

header files containing C++ code may seem unnatural, but this

comes from the recommended practices described in ‘Writing R

Extensions’ (R Core Team, 2021).

2.6. Roxygen Comments. The roxygen2 package (Wickham et al.,

2021) provides a facility for automatically generating R documen-

tation files based on specially formatted comments in R source

code.

If you include roxygen comments in your C++ source file with

a //' prefix then compileAttributes will transpose them into

R roxygen comments within R/RcppExports.R. For example the

following code in a C++ source file:

//' The length of a string (in characters).

//'

//' @param str input character vector

//' @return characters in each element of the vector

// [[Rcpp::export]]

NumericVector strLength(CharacterVector str)

Results in the following code in the generated R source file:

#' The length of a string (in characters).

#'

#' @param str input character vector

#' @return characters in each element of the vector

strLength <- function(str)

2.7. Providing a C++ Interface. The interface exposed from R pack-

ages is most typically a set of R functions. However, the R package

system also provides a mechanism to allow the exporting of C and

C++ interfaces using package header files. This is based on the

R_RegisterCCallable and R_GetCCallable functions described

in ‘Writing R Extensions’ (R Core Team, 2021).

C++ interfaces to a package are published within the top level

include directory of the package (which within the package source

directory is located at inst/include). The R build system auto-

matically adds the required include directories for all packages

specified in the LinkingTo field of the package DESCRIPTION file.

2.7.1. Interfaces Attribute. The Rcpp::interfaces attribute can be

used to automatically generate a header-only interface to your C++

functions within the include directory of your package.

Allaire, Eddelbuettel, François Rcpp Vignette | July 3, 2023 | 5

The Rcpp::interfaces attribute is specified on a per-source

file basis, and indicates which interfaces (R, C++, or both) should

be provided for exported functions within the file.

For example, the following specifies that both R and C++ inter-

faces should be generated for a source file:

// [[Rcpp::interfaces(r, cpp)]]

Note that the default behavior if an Rcpp::interfaces at-

tribute is not included in a source file is to generate an R interface

only.

2.7.2. Generated Code. If you request a cpp interface for a source

file then compileAttributes generates the following header files

(substituting Package with the name of the package code is being

generated for):

inst/include/Package.h

inst/include/Package_RcppExports.h

The Package_RcppExports.h file has inline definitions for

all exported C++ functions that enable calling them using the

R_GetCCallable mechanism.

The Package.h file does nothing other than include the

Package_RcppExports.h header. This is done so that package

authors can replace the Package.h header with a custom one and

still be able to include the automatically generated exports (details

on doing this are provided in the next section).

The exported functions are defined within a C++ namespace that

matches the name of the package. For example, an exported C++

function bar could be called from package MyPackage as follows:

// [[Rcpp::depends(MyPackage)]]

#include <MyPackage.h>

void foo() {

MyPackage::bar();

}

2.7.3. Including Additional Code. You might wish to use the

Rcpp::interfaces attribute to generate a part of your package’s

C++ interface but also provide additional custom C++ code. In this

case you should replace the generated Package.h file with one of

your own.

Note that the way Rcpp distinguishes user verses generated

files is by checking for the presence a special token in the file (if it’s

present then it’s known to be generated and thus safe to overwrite).

You’ll see this token at the top of the generated Package.h file, be

sure to remove it if you want to provide a custom header.

Once you’ve established a custom package header file, you need

only include the Package_RcppExports.h file within your header

to make available the automatically generated code alongside your

own.

If you need to include code from your custom header files within

the compilation of your package source files, you will also need

to add the following entry to Makevars and Makevars.win (both

are in the src directory of your package):

PKG_CPPFLAGS += -I../inst/include/

Note that the R package build system does not automatically

force a rebuild when headers in inst/include change, so you

should be sure to perform a full rebuild of the package after making

changes to these headers.

References

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2023). Rcpp: Seamless R and C++ Integration. R package version

1.0.11, URL https://CRAN.R-Project.org/package=Rcpp.

Maurer J, Wong M (2008). “Towards support for attributes in C++ (Revision 6).” In

JTC1/SC22/WG21 - The C++ Standards Committee. N2761=08-0271, URL

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf.

R Core Team (2021). Writing R extensions. R Foundation for Statistical Comput-

ing, Vienna, Austria. URL https://CRAN.R-Project.org/doc/manuals/R-exts.

html.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, François R, Soetaert K, Ranke J

(2021). inline: Inline C, C++, Fortran function calls from R. R package version

0.3.19, URL https://CRAN.R-Project.org/package=inline.

Wickham H, Danenberg P, Csŕdi G, Eugster M (2021). roxygen2: In-source

documentation for R. R package version 7.1.2, URL https://CRAN.R-Project.

org/package=roxygen2.

6 | https://cran.r-project.org/package=Rcpp Allaire, Eddelbuettel, François

