
zoo Quick Reference

Ajay Shah

National Institute of Public
Finance and Policy, India

Achim Zeileis

Universität Innsbruck
Gabor Grothendieck

GKX Associates Inc.

Abstract

This vignette gives a brief overview of (some of) the functionality contained in zoo

including several nifty code snippets when dealing with (daily) financial data. For a
more complete overview of the package’s functionality and extensibility see Zeileis and
Grothendieck (2005) (contained as vignette “zoo” in the package), the manual pages and
the reference card.

Keywords: irregular time series, daily data, weekly data, returns.

Read a series from a text file

To read in data in a text file, read.table() and associated functions can be used as usual with
zoo() being called subsequently. The convenience function read.zoo is a simple wrapper to
these functions that assumes the index is in the first column of the file and the remaining
columns are data.

Data in demo1.txt, where each row looks like

23 Feb 2005|43.72

can be read in via

R> Sys.setlocale("LC_TIME", "C")

[1] "C"

R> inrusd <- read.zoo("demo1.txt", sep = "|", format="%d %b %Y")

The format argument causes the first column to be transformed to an index of class "Date".
The Sys.setlocale is set to "C" here to assure that the English month abbreviations are
read correctly. (It is unnecessary if the system is already set to a locale that understands
English month abbreviations.)

The data in demo2.txt look like

Daily,24 Feb 2005,2055.30,4337.00

and requires more attention because of the format of the first column.

2 zoo Quick Reference

R> tmp <- read.table("demo2.txt", sep = ",")

R> z <- zoo(tmp[, 3:4], as.Date(as.character(tmp[, 2]), format="%d %b %Y"))

R> colnames(z) <- c("Nifty", "Junior")

Query dates

To return all dates corresponding to a series index(z) or equivalently

R> time(z)

[1] "2005-02-10" "2005-02-11" "2005-02-14" "2005-02-15" "2005-02-17"

[6] "2005-02-18" "2005-02-21" "2005-02-22" "2005-02-23" "2005-02-24"

[11] "2005-02-25" "2005-02-28" "2005-03-01" "2005-03-02" "2005-03-03"

[16] "2005-03-04" "2005-03-07" "2005-03-08" "2005-03-09" "2005-03-10"

can be used. The first and last date can be obtained by

R> start(z)

[1] "2005-02-10"

R> end(inrusd)

[1] "2005-03-10"

Convert back into a plain matrix

To strip off the dates and just return a plain vector/matrix coredata can be used

R> plain <- coredata(z)

R> str(plain)

num [1:20, 1:2] 2063 2082 2098 2090 2062 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "Nifty" "Junior"

Union and intersection

Unions and intersections of series can be computed by merge. The intersection are those days
where both series have time points:

R> m <- merge(inrusd, z, all = FALSE)

whereas the union uses all dates and fills the gaps where one series has a time point but the
other does not with NAs (by default):

Ajay Shah, Achim Zeileis, Gabor Grothendieck 3

R> m <- merge(inrusd, z)

cbind(inrusd, z) is almost equivalent to the merge call, but may lead to inferior naming in
some situations hence merge is preferred

To combine a series with its lag, use

R> merge(inrusd, lag(inrusd, -1))

inrusd lag(inrusd, -1)

2005-02-10 43.78 NA

2005-02-11 43.79 43.78

2005-02-14 43.72 43.79

2005-02-15 43.76 43.72

2005-02-16 43.82 43.76

2005-02-17 43.74 43.82

2005-02-18 43.84 43.74

2005-02-21 43.82 43.84

2005-02-22 43.72 43.82

2005-02-23 43.72 43.72

2005-02-24 43.70 43.72

2005-02-25 43.69 43.70

2005-02-28 43.64 43.69

2005-03-01 43.72 43.64

2005-03-02 43.70 43.72

2005-03-03 43.65 43.70

2005-03-04 43.71 43.65

2005-03-07 43.69 43.71

2005-03-09 43.67 43.69

2005-03-10 43.58 43.67

Visualization

By default, the plot method generates a graph for each series in m

R> plot(m)

4 zoo Quick Reference

4
3
.6

0
4
3
.6

5
4
3
.7

0
4
3
.7

5
4
3
.8

0
4
3
.8

5

in
ru

s
d

2
0
4
0

2
0
8
0

2
1
2
0

2
1
6
0

N
if
ty

Feb 14 Feb 21 Feb 28 Mar 07

Index

4
3
0
0

4
4
0
0

4
5
0
0

4
6
0
0

J
u
n
io

r

m

but several series can also be plotted in a single window.

R> plot(m[, 2:3], plot.type = "single", col = c("red", "blue"), lwd = 2)

Ajay Shah, Achim Zeileis, Gabor Grothendieck 5

Feb 14 Feb 21 Feb 28 Mar 07

2
0
0
0

3
0
0
0

4
0
0
0

Index

m
[,
 2

:3
]

Select (a few) observations

Selections can be made for a range of dates of interest

R> window(z, start = as.Date("2005-02-15"), end = as.Date("2005-02-28"))

Nifty Junior

2005-02-15 2089.95 4367.25

2005-02-17 2061.90 4320.15

2005-02-18 2055.55 4318.15

2005-02-21 2043.20 4262.25

2005-02-22 2058.40 4326.10

2005-02-23 2057.10 4346.00

2005-02-24 2055.30 4337.00

2005-02-25 2060.90 4305.75

2005-02-28 2103.25 4388.20

and also just for a single date

R> m[as.Date("2005-03-10")]

inrusd Nifty Junior

2005-03-10 43.58 2167.4 4648.05

Handle missing data

Various methods for dealing with NAs are available, including linear interpolation

R> interpolated <- na.approx(m)

‘last observation carried forward’,

6 zoo Quick Reference

R> m <- na.locf(m)

R> m

inrusd Nifty Junior

2005-02-10 43.78 2063.35 4379.20

2005-02-11 43.79 2082.05 4382.90

2005-02-14 43.72 2098.25 4391.15

2005-02-15 43.76 2089.95 4367.25

2005-02-16 43.82 2089.95 4367.25

2005-02-17 43.74 2061.90 4320.15

2005-02-18 43.84 2055.55 4318.15

2005-02-21 43.82 2043.20 4262.25

2005-02-22 43.72 2058.40 4326.10

2005-02-23 43.72 2057.10 4346.00

2005-02-24 43.70 2055.30 4337.00

2005-02-25 43.69 2060.90 4305.75

2005-02-28 43.64 2103.25 4388.20

2005-03-01 43.72 2084.40 4382.25

2005-03-02 43.70 2093.25 4470.00

2005-03-03 43.65 2128.85 4515.80

2005-03-04 43.71 2148.15 4549.55

2005-03-07 43.69 2160.10 4618.05

2005-03-08 43.69 2168.95 4666.70

2005-03-09 43.67 2160.80 4623.85

2005-03-10 43.58 2167.40 4648.05

and others.

Prices and returns

To compute log-difference returns in %, the following convenience function is defined

R> prices2returns <- function(x) 100*diff(log(x))

which can be used to convert all columns (of prices) into returns.

R> r <- prices2returns(m)

A 10-day rolling window standard deviations (for all columns) can be computed by

R> rollapply(r, 10, sd)

inrusd Nifty Junior

2005-02-17 0.14599121 0.6993355 0.7878843

2005-02-18 0.14527421 0.6300543 0.8083622

2005-02-21 0.14115862 0.8949318 1.0412806

2005-02-22 0.15166883 0.9345299 1.0256508

2005-02-23 0.14285470 0.9454103 1.1957959

Ajay Shah, Achim Zeileis, Gabor Grothendieck 7

2005-02-24 0.13607992 0.9453855 1.1210963

2005-02-25 0.11962991 0.9334899 1.1105966

2005-02-28 0.11963193 0.8585071 0.9388661

2005-03-01 0.09716262 0.8569891 0.9131822

2005-03-02 0.09787943 0.8860388 1.0566389

2005-03-03 0.11568119 0.8659890 1.0176645

To go from a daily series to the series of just the last-traded-day of each month aggregate

can be used

R> prices2returns(aggregate(m, as.yearmon, tail, 1))

inrusd Nifty Junior

Mar 2005 -0.1375831 3.004453 5.752866

Analogously, the series can be aggregated to the last-traded-day of each week employing a
convenience function nextfri that computes for each "Date" the next friday.

R> nextfri <- function(x) 7 * ceiling(as.numeric(x-5+4) / 7) + as.Date(5-4)

R> prices2returns(aggregate(na.locf(m), nextfri, tail, 1))

inrusd Nifty Junior

2005-02-18 0.11411618 -1.2809533 -1.4883536

2005-02-25 -0.34273997 0.2599329 -0.2875731

2005-03-04 0.04576659 4.1464226 5.5076988

2005-03-11 -0.29785794 0.8921286 2.1419450

Here is a similar example of aggregate where we define to4sec analogously to nextfri in
order to aggregate the zoo object zsec every 4 seconds.

R> zsec <- structure(1:10, index = structure(c(1234760403.968, 1234760403.969,

+ 1234760403.969, 1234760405.029, 1234760405.029, 1234760405.03,

+ 1234760405.03, 1234760405.072, 1234760405.073, 1234760405.073

+), class = c("POSIXt", "POSIXct"), tzone = ""), class = "zoo")

R> to4sec <- function(x) as.POSIXct(4*ceiling(as.numeric(x)/4), origin = "1970-01-01")

R> aggregate(zsec, to4sec, tail, 1)

2009-02-16 05:00:04 2009-02-16 05:00:08

3 10

Here is another example using the same zsec zoo object but this time rather than aggregating
we truncate times to the second using the last data value for each such second. For large
objects this will be much faster than using aggregate.zoo .

R> # tmp is zsec with time discretized into one second bins

R> tmp <- zsec

R> st <- start(tmp)

8 zoo Quick Reference

R> Epoch <- st - as.numeric(st)

R> time(tmp) <- as.integer(time(tmp) + 1e-7) + Epoch

R> # find index of last value in each one second interval

R> ix <- !duplicated(time(tmp), fromLast = TRUE)

R> # merge with grid

R> merge(tmp[ix], zoo(, seq(start(tmp), end(tmp), "sec")))

2009-02-16 05:00:03 2009-02-16 05:00:04 2009-02-16 05:00:05

3 NA 10

R> # Here is a function which generalizes the above:

R>

R> intraday.discretise <- function(b, Nsec) {

+ st <- start(b)

+ time(b) <- Nsec * as.integer(time(b)+1e-7) %/% Nsec + st -

+ as.numeric(st)

+ ix <- !duplicated(time(b), fromLast = TRUE)

+ merge(b[ix], zoo(, seq(start(b), end(b), paste(Nsec, "sec"))))

+ }

R> intraday.discretise(zsec, 1)

2009-02-16 05:00:03 2009-02-16 05:00:04 2009-02-16 05:00:05

3 NA 10

R>

Query Yahoo! Finance

When connected to the internet, Yahoo! Finance can be easily queried using the get.hist.quote

function in

R> library("tseries")

From version 0.9-30 on, get.hist.quote by default returns "zoo" series with a "Date"

attribute (in previous versions these had to be transformed from "ts" ‘by hand’).

A daily series can be obtained by:

R> sunw <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31")

A monthly series can be obtained and transformed by

R> sunw2 <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31",

+ compression = "m", quote = "Close")

Here, "yearmon" dates might be even more useful:

R> time(sunw2) <- as.yearmon(time(sunw2))

Ajay Shah, Achim Zeileis, Gabor Grothendieck 9

The same series can equivalently be computed from the daily series via

R> sunw3 <- aggregate(sunw[, "Close"], as.yearmon, tail, 1)

The corresponding returns can be computed via

R> r <- prices2returns(sunw3)

where r is still a "zoo" series.

Query Oanda

Similarly you can obtain historical exchange rates from http://www.oanda.com/ using get.hist.quote.

A daily series of EUR/USD exchange rates can be queried by

R> eur.usd <- get.hist.quote(instrument = "EUR/USD", provider = "oanda", start = "2004-01-01",

This contains the exchange rates for every day in 2004. However, it is common practice
in many situations to exclude the observations from weekends. To do so, we write a little
convenience function which can determine for a vector of "Date" observations whether it is a
weekend or not

R> is.weekend <- function(x) ((as.numeric(x)-2) %% 7) < 2

Based on this we can omit all observations from weekends

R> eur.usd <- eur.usd[!is.weekend(time(eur.usd))]

The function is.weekend introduced above exploits the fact that a "Date" is essentially
the number of days since 1970-01-01, a Thursday. A more intelligible function which yields
identical results could be based on the "POSIXlt" class

R> is.weekend <- function(x) {

+ x <- as.POSIXlt(x)

+ x$wday > 5 | x$wday < 1

+ }

Summaries

Here we create a daily series and then find the series of quarterly means and standard devi-
ations and also for weekly means and standard deviations where we define weeks to end on
Tuesay.

We do the above separately for mean and standard deviation, binding the two results together
and then show a different approach in which we define a custom ag function that can accept
multiple function names as a vector argument.

http://www.oanda.com/

10 zoo Quick Reference

R> date1 <- seq(as.Date("2001-01-01"), as.Date("2002-12-1"), by = "day")

R> len1 <- length(date1)

R> set.seed(1) # to make it reproducible

R> data1 <- zoo(rnorm(len1), date1)

R> # quarterly summary

R>

R> data1q.mean <- aggregate(data1, as.yearqtr, mean)

R> data1q.sd <- aggregate(data1, as.yearqtr, sd)

R> head(cbind(mean = data1q.mean, sd = data1q.sd), main = "Quarterly")

mean sd

2001 Q1 0.108503596 0.8861821

2001 Q2 -0.006836172 0.9800027

2001 Q3 -0.042260559 0.9954100

2001 Q4 0.096188411 1.0336234

2002 Q1 -0.092684201 1.0337850

2002 Q2 0.049217429 1.0860119

R> # weekly summary - week ends on tuesday

R>

R> # Given a date find the next Tuesday.

R> # Based on formula in Prices and Returns section.

R> nexttue <- function(x) 7 * ceiling(as.numeric(x - 2 + 4)/7) + as.Date(2 - 4)

R> data1w <- cbind(

+ mean = aggregate(data1, nexttue, mean),

+ sd = aggregate(data1, nexttue, sd)

+)

R> head(data1w)

mean sd

2001-01-02 -0.22140524 0.5728252

2001-01-09 0.29574667 0.8686111

2001-01-16 -0.02281531 1.2305420

2001-01-23 0.58834959 0.3993624

2001-01-30 -0.44463015 0.9619139

2001-02-06 -0.08522653 0.8349544

R> ### ALTERNATIVE ###

R>

R> # Create function ag like aggregate but takes vector of

R> # function names.

R>

R> FUNs <- c(mean, sd)

R> ag <- function(z, by, FUNs) {

+ f <- function(f) aggregate(z, by, f)

+ do.call(cbind, sapply(FUNs, f, simplify = FALSE))

+ }

Ajay Shah, Achim Zeileis, Gabor Grothendieck 11

R> data1q <- ag(data1, as.yearqtr, c("mean", "sd"))

R> data1w <- ag(data1, nexttue, c("mean", "sd"))

R> head(data1q)

mean sd

2001 Q1 0.108503596 0.8861821

2001 Q2 -0.006836172 0.9800027

2001 Q3 -0.042260559 0.9954100

2001 Q4 0.096188411 1.0336234

2002 Q1 -0.092684201 1.0337850

2002 Q2 0.049217429 1.0860119

R> head(data1w)

mean sd

2001-01-02 -0.22140524 0.5728252

2001-01-09 0.29574667 0.8686111

2001-01-16 -0.02281531 1.2305420

2001-01-23 0.58834959 0.3993624

2001-01-30 -0.44463015 0.9619139

2001-02-06 -0.08522653 0.8349544

References

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. URL 10.18637/jss.v014.i06.

Affiliation:

Ajay Shah
National Institute of Public Finance and Policy, India
E-mail: ajayshah@mayin.org

Achim Zeileis
Universität Innsbruck
E-mail: Achim.Zeileis@R-project.org

Gabor Grothendieck
GKX Associates Inc.
E-mail: ggrothendieck@gmail.com

10.18637/jss.v014.i06
mailto:ajayshah@mayin.org
mailto:Achim.Zeileis@R-project.org
mailto:ggrothendieck@gmail.com

