# This file is a part of Julia. License is MIT: https://julialang.org/license ## Binary arithmetic operators ## for f in (:+, :-) @eval function ($f)(A::AbstractArray, B::AbstractArray) promote_shape(A, B) # check size compatibility broadcast_preserving_zero_d($f, A, B) end end function +(A::Array, Bs::Array...) for B in Bs promote_shape(A, B) # check size compatibility end broadcast_preserving_zero_d(+, A, Bs...) end for f in (:/, :\, :*) if f !== :/ @eval ($f)(A::Number, B::AbstractArray) = broadcast_preserving_zero_d($f, A, B) end if f !== :\ @eval ($f)(A::AbstractArray, B::Number) = broadcast_preserving_zero_d($f, A, B) end end ## data movement ## """ reverse(A; dims=:) Reverse `A` along dimension `dims`, which can be an integer (a single dimension), a tuple of integers (a tuple of dimensions) or `:` (reverse along all the dimensions, the default). See also [`reverse!`](@ref) for in-place reversal. # Examples ```jldoctest julia> b = Int64[1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> reverse(b, dims=2) 2×2 Matrix{Int64}: 2 1 4 3 julia> reverse(b) 2×2 Matrix{Int64}: 4 3 2 1 ``` !!! compat "Julia 1.6" Prior to Julia 1.6, only single-integer `dims` are supported in `reverse`. """ reverse(A::AbstractArray; dims=:) = _reverse(A, dims) _reverse(A, dims) = reverse!(copymutable(A); dims) """ reverse!(A; dims=:) Like [`reverse`](@ref), but operates in-place in `A`. !!! compat "Julia 1.6" Multidimensional `reverse!` requires Julia 1.6. """ reverse!(A::AbstractArray; dims=:) = _reverse!(A, dims) _reverse!(A::AbstractArray{<:Any,N}, ::Colon) where {N} = _reverse!(A, ntuple(identity, Val{N}())) _reverse!(A, dim::Integer) = _reverse!(A, (Int(dim),)) _reverse!(A, dims::NTuple{M,Integer}) where {M} = _reverse!(A, Int.(dims)) function _reverse!(A::AbstractArray{<:Any,N}, dims::NTuple{M,Int}) where {N,M} dimrev = ntuple(k -> k in dims, Val{N}()) # boolean tuple indicating reversed dims if N < M || M != sum(dimrev) throw(ArgumentError("invalid dimensions $dims in reverse!")) end M == 0 && return A # nothing to reverse # swapping loop only needs to traverse ≈half of the array halfsz = ntuple(k -> k == dims[1] ? size(A,k) ÷ 2 : size(A,k), Val{N}()) last1 = ntuple(k -> lastindex(A,k)+firstindex(A,k), Val{N}()) # offset for reversed index for i in CartesianIndices(ntuple(k -> firstindex(A,k):firstindex(A,k)-1+@inbounds(halfsz[k]), Val{N}())) iₜ = Tuple(i) iᵣ = CartesianIndex(ifelse.(dimrev, last1 .- iₜ, iₜ)) @inbounds A[iᵣ], A[i] = A[i], A[iᵣ] end if M > 1 && isodd(size(A, dims[1])) # middle slice for odd dimensions must be recursively flipped mid = firstindex(A, dims[1]) + (size(A, dims[1]) ÷ 2) midslice = CartesianIndices(ntuple(k -> k == dims[1] ? (mid:mid) : (firstindex(A,k):lastindex(A,k)), Val{N}())) _reverse!(view(A, midslice), dims[2:end]) end return A end # fix ambiguity with array.jl: _reverse!(A::AbstractVector, dim::Tuple{Int}) = _reverse!(A, first(dim)) """ rotl90(A) Rotate matrix `A` left 90 degrees. # Examples ```jldoctest julia> a = [1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> rotl90(a) 2×2 Matrix{Int64}: 2 4 1 3 ``` """ function rotl90(A::AbstractMatrix) ind1, ind2 = axes(A) B = similar(A, (ind2,ind1)) n = first(ind2)+last(ind2) for i=axes(A,1), j=ind2 B[n-j,i] = A[i,j] end return B end """ rotr90(A) Rotate matrix `A` right 90 degrees. # Examples ```jldoctest julia> a = [1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> rotr90(a) 2×2 Matrix{Int64}: 3 1 4 2 ``` """ function rotr90(A::AbstractMatrix) ind1, ind2 = axes(A) B = similar(A, (ind2,ind1)) m = first(ind1)+last(ind1) for i=ind1, j=axes(A,2) B[j,m-i] = A[i,j] end return B end """ rot180(A) Rotate matrix `A` 180 degrees. # Examples ```jldoctest julia> a = [1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> rot180(a) 2×2 Matrix{Int64}: 4 3 2 1 ``` """ function rot180(A::AbstractMatrix) B = similar(A) ind1, ind2 = axes(A,1), axes(A,2) m, n = first(ind1)+last(ind1), first(ind2)+last(ind2) for j=ind2, i=ind1 B[m-i,n-j] = A[i,j] end return B end """ rotl90(A, k) Left-rotate matrix `A` 90 degrees counterclockwise an integer `k` number of times. If `k` is a multiple of four (including zero), this is equivalent to a `copy`. # Examples ```jldoctest julia> a = [1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> rotl90(a,1) 2×2 Matrix{Int64}: 2 4 1 3 julia> rotl90(a,2) 2×2 Matrix{Int64}: 4 3 2 1 julia> rotl90(a,3) 2×2 Matrix{Int64}: 3 1 4 2 julia> rotl90(a,4) 2×2 Matrix{Int64}: 1 2 3 4 ``` """ function rotl90(A::AbstractMatrix, k::Integer) k = mod(k, 4) k == 1 ? rotl90(A) : k == 2 ? rot180(A) : k == 3 ? rotr90(A) : copy(A) end """ rotr90(A, k) Right-rotate matrix `A` 90 degrees clockwise an integer `k` number of times. If `k` is a multiple of four (including zero), this is equivalent to a `copy`. # Examples ```jldoctest julia> a = [1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> rotr90(a,1) 2×2 Matrix{Int64}: 3 1 4 2 julia> rotr90(a,2) 2×2 Matrix{Int64}: 4 3 2 1 julia> rotr90(a,3) 2×2 Matrix{Int64}: 2 4 1 3 julia> rotr90(a,4) 2×2 Matrix{Int64}: 1 2 3 4 ``` """ rotr90(A::AbstractMatrix, k::Integer) = rotl90(A,-k) """ rot180(A, k) Rotate matrix `A` 180 degrees an integer `k` number of times. If `k` is even, this is equivalent to a `copy`. # Examples ```jldoctest julia> a = [1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> rot180(a,1) 2×2 Matrix{Int64}: 4 3 2 1 julia> rot180(a,2) 2×2 Matrix{Int64}: 1 2 3 4 ``` """ rot180(A::AbstractMatrix, k::Integer) = mod(k, 2) == 1 ? rot180(A) : copy(A)