# This file is a part of Julia. License is MIT: https://julialang.org/license # promote Bool to any other numeric type promote_rule(::Type{Bool}, ::Type{T}) where {T<:Number} = T typemin(::Type{Bool}) = false typemax(::Type{Bool}) = true ## boolean operations ## """ !(x) Boolean not. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic), returning [`missing`](@ref) if `x` is `missing`. See also [`~`](@ref) for bitwise not. # Examples ```jldoctest julia> !true false julia> !false true julia> !missing missing julia> .![true false true] 1×3 BitMatrix: 0 1 0 ``` """ !(x::Bool) = not_int(x) (~)(x::Bool) = !x (&)(x::Bool, y::Bool) = and_int(x, y) (|)(x::Bool, y::Bool) = or_int(x, y) """ xor(x, y) ⊻(x, y) Bitwise exclusive or of `x` and `y`. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic), returning [`missing`](@ref) if one of the arguments is `missing`. The infix operation `a ⊻ b` is a synonym for `xor(a,b)`, and `⊻` can be typed by tab-completing `\\xor` or `\\veebar` in the Julia REPL. # Examples ```jldoctest julia> xor(true, false) true julia> xor(true, true) false julia> xor(true, missing) missing julia> false ⊻ false false julia> [true; true; false] .⊻ [true; false; false] 3-element BitVector: 0 1 0 ``` """ xor(x::Bool, y::Bool) = (x != y) """ nand(x, y) ⊼(x, y) Bitwise nand (not and) of `x` and `y`. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic), returning [`missing`](@ref) if one of the arguments is `missing`. The infix operation `a ⊼ b` is a synonym for `nand(a,b)`, and `⊼` can be typed by tab-completing `\\nand` or `\\barwedge` in the Julia REPL. # Examples ```jldoctest julia> nand(true, false) true julia> nand(true, true) false julia> nand(true, missing) missing julia> false ⊼ false true julia> [true; true; false] .⊼ [true; false; false] 3-element BitVector: 0 1 1 ``` """ nand(x...) = ~(&)(x...) """ nor(x, y) ⊽(x, y) Bitwise nor (not or) of `x` and `y`. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic), returning [`missing`](@ref) if one of the arguments is `missing` and the other is not `true`. The infix operation `a ⊽ b` is a synonym for `nor(a,b)`, and `⊽` can be typed by tab-completing `\\nor` or `\\barvee` in the Julia REPL. # Examples ```jldoctest julia> nor(true, false) false julia> nor(true, true) false julia> nor(true, missing) false julia> false ⊽ false true julia> false ⊽ missing missing julia> [true; true; false] .⊽ [true; false; false] 3-element BitVector: 0 0 1 ``` """ nor(x...) = ~(|)(x...) >>(x::Bool, c::UInt) = Int(x) >> c <<(x::Bool, c::UInt) = Int(x) << c >>>(x::Bool, c::UInt) = Int(x) >>> c signbit(x::Bool) = false sign(x::Bool) = x abs(x::Bool) = x abs2(x::Bool) = x iszero(x::Bool) = !x isone(x::Bool) = x <(x::Bool, y::Bool) = y&!x <=(x::Bool, y::Bool) = y|!x ## do arithmetic as Int ## +(x::Bool) = Int(x) -(x::Bool) = -Int(x) +(x::Bool, y::Bool) = Int(x) + Int(y) -(x::Bool, y::Bool) = Int(x) - Int(y) *(x::Bool, y::Bool) = x & y ^(x::Bool, y::Bool) = x | !y ^(x::Integer, y::Bool) = ifelse(y, x, one(x)) # preserve -0.0 in `false + -0.0` function +(x::Bool, y::T)::promote_type(Bool,T) where T<:AbstractFloat return ifelse(x, oneunit(y) + y, y) end +(y::AbstractFloat, x::Bool) = x + y # make `false` a "strong zero": false*NaN == 0.0 function *(x::Bool, y::T)::promote_type(Bool,T) where T<:AbstractFloat return ifelse(x, y, copysign(zero(y), y)) end *(y::AbstractFloat, x::Bool) = x * y div(x::Bool, y::Bool) = y ? x : throw(DivideError()) rem(x::Bool, y::Bool) = y ? false : throw(DivideError()) mod(x::Bool, y::Bool) = rem(x,y)