# This file is a part of Julia. License is MIT: https://julialang.org/license using Test, Random # test the basic floating point functions @testset "flipsign" begin for elty in (Float32,Float64) x = convert(elty,-2.0) x = flipsign(x,-1.0) @test flipsign(x,big(-1.0)) == convert(elty,-2.0) end end @testset "maxintfloat" begin @test maxintfloat(Float16) === Float16(2048f0) for elty in (Float16,Float32,Float64) @test maxintfloat(rand(elty)) === maxintfloat(elty) end @test maxintfloat() === maxintfloat(Float64) @test maxintfloat(Float64, Int32) === 2147483647.0 @test maxintfloat(Float32, Int32) === maxintfloat(Float32) @test maxintfloat(Float64, Int16) === 32767.0 @test maxintfloat(Float64, Int64) === maxintfloat(Float64) end @testset "isinteger" begin for elty in (Float16, Float32, Float64) @test !isinteger(elty(1.2)) @test isinteger(elty(12)) @test isinteger(zero(elty)) @test isinteger(-zero(elty)) @test !isinteger(nextfloat(zero(elty))) @test !isinteger(prevfloat(zero(elty))) @test isinteger(maxintfloat(elty)) @test isinteger(-maxintfloat(elty)) @test !isinteger(elty(Inf)) @test !isinteger(-elty(Inf)) @test !isinteger(elty(NaN)) end end @testset "ispow2 and iseven/isodd" begin for T in (Float16,Float32,Float64,BigFloat) for x in (0.25, 1.0, 4.0, exp2(T(exponent(floatmax(T)))), exp2(T(exponent(floatmin(T))))) @test ispow2(T(x)) end for x in (1.5, 0.0, 7.0, NaN, Inf) @test !ispow2(T(x)) end for x in (0, 134) @test iseven(T(x)) && iseven(T(-x)) @test isodd(T(x+1)) && isodd(T(-x-1)) end let x = maxintfloat(T) * π @test iseven(x) && iseven(-x) @test !isodd(x) && !isodd(-x) end @test !iseven(0.5) && !isodd(0.5) end end @testset "round" begin for elty in (Float32, Float64) x = rand(elty) A = fill(x,(10,10)) @test round.(A,RoundToZero) == fill(trunc(x),(10,10)) @test round.(A,RoundUp) == fill(ceil(x),(10,10)) @test round.(A,RoundDown) == fill(floor(x),(10,10)) A = fill(x,(10,10,10)) @test round.(A,RoundToZero) == fill(trunc(x),(10,10,10)) @test round.(A,RoundUp) == fill(ceil(x),(10,10,10)) @test round.(A,RoundDown) == fill(floor(x),(10,10,10)) for elty2 in (Int32,Int64) A = fill(x,(10,)) @test round.(elty2,A,RoundToZero) == fill(trunc(elty2,x),(10,)) @test round.(elty2,A,RoundUp) == fill(ceil(elty2,x),(10,)) @test round.(elty2,A,RoundDown) == fill(floor(elty2,x),(10,)) A = fill(x,(10,10)) @test round.(elty2,A,RoundToZero) == fill(trunc(elty2,x),(10,10)) @test round.(elty2,A,RoundUp) == fill(ceil(elty2,x),(10,10)) @test round.(elty2,A,RoundDown) == fill(floor(elty2,x),(10,10)) A = fill(x,(10,10,10)) @test round.(elty2,A,RoundToZero) == fill(trunc(elty2,x),(10,10,10)) @test round.(elty2,A,RoundUp) == fill(ceil(elty2,x),(10,10,10)) @test round.(elty2,A,RoundDown) == fill(floor(elty2,x),(10,10,10)) @test round.(elty2,A) == fill(round(elty2,x),(10,10,10)) end end end @testset "Types" begin for x in (Int16(0), 1, 2f0, pi, 3//4, big(5//6), 7.8, big(9), big(ℯ)) @test float(typeof(x)) == typeof(float(x)) @test float(typeof(complex(x, x))) == typeof(float(complex(x, x))) end end @testset "significant digits" begin # (would be nice to have a smart vectorized # version of signif) @test round(123.456, sigdigits=1) ≈ 100. @test round(123.456, sigdigits=3) ≈ 123. @test round(123.456, sigdigits=5) ≈ 123.46 @test round(123.456, sigdigits=8, base = 2) ≈ 123.5 @test round(123.456, sigdigits=2, base = 4) ≈ 128.0 @test round(0.0, sigdigits=1) === 0.0 @test round(-0.0, sigdigits=1) === -0.0 @test round(1.2, sigdigits=2) === 1.2 @test round(1.0, sigdigits=6) === 1.0 @test round(0.6, sigdigits=1) === 0.6 @test round(7.262839104539736, sigdigits=2) === 7.3 @test isinf(round(Inf, sigdigits=3)) @test isnan(round(NaN, sigdigits=3)) @test round(1.12312, sigdigits=1000) === 1.12312 @test round(Float32(7.262839104539736), sigdigits=3) === Float32(7.26) @test round(Float32(7.262839104539736), sigdigits=4) === Float32(7.263) @test round(Float32(1.2), sigdigits=3) === Float32(1.2) @test round(Float32(1.2), sigdigits=5) === Float32(1.2) @test round(Float16(0.6), sigdigits=2) === Float16(0.6) @test round(Float16(1.1), sigdigits=70) === Float16(1.1) # issue 37171 @test round(9.87654321e-308, sigdigits = 1) ≈ 1.0e-307 @test round(9.87654321e-308, sigdigits = 2) ≈ 9.9e-308 @test round(9.87654321e-308, sigdigits = 3) ≈ 9.88e-308 @test round(9.87654321e-308, sigdigits = 4) ≈ 9.877e-308 @test round(9.87654321e-308, sigdigits = 5) ≈ 9.8765e-308 @test round(9.87654321e-308, sigdigits = 6) ≈ 9.87654e-308 @test round(9.87654321e-308, sigdigits = 7) ≈ 9.876543e-308 @test round(9.87654321e-308, sigdigits = 8) ≈ 9.8765432e-308 @test round(9.87654321e-308, sigdigits = 9) ≈ 9.87654321e-308 @test round(9.87654321e-308, sigdigits = 10) ≈ 9.87654321e-308 @test round(9.87654321e-308, sigdigits = 11) ≈ 9.87654321e-308 @inferred round(Float16(1.), sigdigits=2) @inferred round(Float32(1.), sigdigits=2) @inferred round(Float64(1.), sigdigits=2) end @testset "literal pow matches runtime pow matches optimized pow" begin let two = 2 @test 1.0000000105367122^2 == 1.0000000105367122^two @test 1.0041504f0^2 == 1.0041504f0^two end function g2(start, two, N) x = start n = 0 for _ in 1:N n += (x^2 !== x^two) x = nextfloat(x) end return n end @test g2(1.0, 2, 100_000_000) == 0 @test g2(1.0f0, 2, 100_000_000) == 0 g2′(start, N) = g2(start, 2, N) @test g2′(1.0, 100_000_000) == 0 @test g2′(1.0f0, 100_000_000) == 0 function g3(start, three, N) x = start n = 0 for _ in 1:N n += (x^3 !== x^three) x = nextfloat(x) end return n end @test g3(1.0, 3, 100_000_000) == 0 @test g3(1.0f0, 3, 100_000_000) == 0 g3′(start, N) = g3(start, 3, N) @test g3′(1.0, 100_000_000) == 0 @test g3′(1.0f0, 100_000_000) == 0 function ginv(start, inv, N) x = start n = 0 for _ in 1:N n += (x^-1 !== x^inv) x = nextfloat(x) end return n end @test ginv(1.0, -1, 100_000_000) == 0 @test ginv(1.0f0, -1, 100_000_000) == 0 ginv′(start, N) = ginv(start, -1, N) @test ginv′(1.0, 100_000_000) == 0 @test ginv′(1.0f0, 100_000_000) == 0 f(x, p) = x^p finv(x) = f(x, -1) f2(x) = f(x, 2) f3(x) = f(x, 3) let x = 1.0000000105367122 @test x^2 == f(x, 2) == f2(x) == x*x == Float64(big(x)*big(x)) @test x^3 == f(x, 3) == f3(x) == x*x*x == Float64(big(x)*big(x)*big(x)) end let x = 1.000000007393669 @test x^-1 == f(x, -1) == finv(x) == 1/x == inv(x) == Float64(1/big(x)) == Float64(inv(big(x))) end end @testset "curried approximation" begin @test ≈(1.0; atol=1).(1.0:3.0) == [true, true, false] end @testset "isnan for Number" begin struct CustomNumber <: Number end @test !isnan(CustomNumber()) end @testset "isapprox and integer overflow" begin for T in (Int8, Int16, Int32) T === Int && continue @test !isapprox(typemin(T), T(0)) @test !isapprox(typemin(T), unsigned(T)(0)) @test !isapprox(typemin(T), 0) @test !isapprox(typemin(T), T(0), atol=0.99) @test !isapprox(typemin(T), unsigned(T)(0), atol=0.99) @test !isapprox(typemin(T), 0, atol=0.99) @test_broken !isapprox(typemin(T), T(0), atol=1) @test_broken !isapprox(typemin(T), unsigned(T)(0), atol=1) @test !isapprox(typemin(T), 0, atol=1) @test !isapprox(typemin(T)+T(10), T(10)) @test !isapprox(typemin(T)+T(10), unsigned(T)(10)) @test !isapprox(typemin(T)+T(10), 10) @test !isapprox(typemin(T)+T(10), T(10), atol=0.99) @test !isapprox(typemin(T)+T(10), unsigned(T)(10), atol=0.99) @test !isapprox(typemin(T)+T(10), 10, atol=0.99) @test_broken !isapprox(typemin(T)+T(10), T(10), atol=1) @test !isapprox(typemin(T)+T(10), unsigned(T)(10), atol=1) @test !isapprox(typemin(T)+T(10), 10, atol=1) @test isapprox(typemin(T), 0.0, rtol=1) end for T in (Int, Int64, Int128) @test !isapprox(typemin(T), T(0)) @test !isapprox(typemin(T), unsigned(T)(0)) @test !isapprox(typemin(T), T(0), atol=0.99) @test !isapprox(typemin(T), unsigned(T)(0), atol=0.99) @test_broken !isapprox(typemin(T), T(0), atol=1) @test_broken !isapprox(typemin(T), unsigned(T)(0), atol=1) @test !isapprox(typemin(T)+T(10), T(10)) @test !isapprox(typemin(T)+T(10), unsigned(T)(10)) @test !isapprox(typemin(T)+T(10), T(10), atol=0.99) @test !isapprox(typemin(T)+T(10), unsigned(T)(10), atol=0.99) @test_broken !isapprox(typemin(T)+T(10), T(10), atol=1) @test !isapprox(typemin(T)+T(10), unsigned(T)(10), atol=1) @test isapprox(typemin(T), 0.0, rtol=1) end end @testset "Conversion from floating point to unsigned integer near extremes (#51063)" begin @test_throws InexactError UInt32(4.2949673f9) @test_throws InexactError UInt64(1.8446744f19) @test_throws InexactError UInt64(1.8446744073709552e19) @test_throws InexactError UInt128(3.402823669209385e38) end @testset "Conversion from floating point to integer near extremes (exhaustive)" begin for Ti in Base.BitInteger_types, Tf in (Float16, Float32, Float64), x in (typemin(Ti), typemax(Ti)) y = Tf(x) for i in -3:3 z = nextfloat(y, i) result = isfinite(z) ? round(BigInt, z) : error result = result !== error && typemin(Ti) <= result <= typemax(Ti) ? result : error if result === error # @test_throws InexactError round(Ti, z) Broken because of #51113 @test_throws InexactError Ti(z) else @test result == round(Ti, z) if isinteger(z) @test result == Ti(z) else @test_throws InexactError Ti(z) end end end end end